Skip to main content
Log in

Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

β-1,3-Glucanases are abundant in plants and have been characterized from a wide range of species. They play key roles in cell division, trafficking of materials through plasmodesmata, in withstanding abiotic stresses and are involved in flower formation through to seed maturation. They also defend plants against fungal pathogens either alone or in association with chitinases and other antifungal proteins. They are grouped in the PR-2 family of pathogenesis-related (PR) proteins. Use of β-1,3-glucanase genes as transgenes in combination with other antifungal genes is a plausible strategy to develop durable resistance in crop plants against fungal pathogens. These genes, sourced from alfalfa, barley, soybean, tobacco, and wheat have been co-expressed along with other antifungal proteins, such as chitinases, peroxidases, thaumatin-like proteins and α-1-purothionin, in various crop plants with promising results that are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal R, Purwar S, Kharbikar L, Sangeeta Gupta L (2011) Induction of a wheat β-1,3-glucanase gene during the defense response to Bipolaris sorokiniana. Acta Phytopathol Entomol Hung 46:37–49

    Article  Google Scholar 

  • Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (Chitinase and Glucanase). GM Crops 2:104–109

    Article  PubMed  Google Scholar 

  • Branco AT, Dos Santos Ferreira B, Lourenco GF, Lopes Marques VC, Tavares Machado OL, Pereira MG, Aquino Almeida JC, de Souza Filho GA (2011) Induction of β-1,3-glucanase in seeds of maize defective-kernel mutant (827Kpro1). Protein Pept Lett 18:651–657

    Article  PubMed  CAS  Google Scholar 

  • Bucciaglia PA, Zimmermann E, Smith AG (2003) Functional analysis of a β-1,3-glucanase gene (Tag 1) with anther-specific RNA and protein accumulation using antisense RNA inhibition. J Plant Physiol 160:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Buchner P, Rochat C, Wuilleme S, Boutin JP (2002) Characterization of a tissue- specific and developmentally regulated β-1,3-glucanase gene in pea (Pisum sativum). Plant Mol Biol 49:171–186

    Article  PubMed  CAS  Google Scholar 

  • Cawood ME, Pretorius JC, van der Westhuizen AJ, Pretorius ZA (2010) Disease development and PR-protein activity in wheat (Triticum aestivum) seedlings treated with plant extracts prior to leaf rust (Puccinia triticina) infection. Crop Prot. 29:1311–1319

    Article  Google Scholar 

  • Chen S, Liu A, Zou Z (2006) Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Russ J Plant Physiol 53:671–677

    Article  CAS  Google Scholar 

  • Choudhury SR, Roy S, Sengupta DN (2009) Characterization of cultivar differences in β-1,3-glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars. Plant Cell Rep 28:1641–1653

    Article  Google Scholar 

  • de Jonge R, Bolton MD, Thomma BP (2011) How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr Opin Plant Biol 14:400–406

    Article  PubMed  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Tredway LP, Shew HD, Wang G-L, Sivamani E, Qu R (2007) Resistance of transgenic tall fescue to two major fungal diseases. Plant Sci 173:501–509

    Article  CAS  Google Scholar 

  • Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ (2007) Functional divergence in the Arabidopsis β-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol 24:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Elvira MI, Galdeano MM, Gilardi P, García-Luque I, Serra MT (2008) Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J Exp Bot 59:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    Article  PubMed  CAS  Google Scholar 

  • Goni O, Sanchez-Ballesta MT, Merodio C, Escribano MI (2010) Potent cryoprotective activity of cold and CO2-regulated cherimoya (Annona cherimola) endochitinase. J Plant Physiol 167:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Ravi I, Sharma V (2012) Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J Plant Interact. doi:10.1080/17429145.2012.679705

    Google Scholar 

  • Hematy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G (2003) Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Sci Res 13:17–34

    Article  CAS  Google Scholar 

  • Leubner-Metzger G (2005) β-1,3-Glucanase gene expression in low hydrated seeds as a mechanism for dormancy release during tobacco after ripening. Plant J 41:133–145

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G, Meins F Jr (1999) Functions and regulation of plant β-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Florida, pp 49–76

    Google Scholar 

  • Li YQ, Kotake T, Sakurai N, Zhao NM, Liu Q (2001) Role of wall-bound β-glucanases in regulating tip-growth of Lilium longiflorum pollen tubes. J Integr Plant Biol 43:461–468

    CAS  Google Scholar 

  • Liang XQ, Holbrook CC, Lynch RE, Guo BZ (2005) β-1,3-Glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein. Phytopathology 95:506–511

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Lu Y, Xin Z, Zhang Z (2009) Identification and antifungal assay of a wheat β-1,3-glucanase. Biotechnol Lett 31:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh C, Lewis J, Radmer L, Shin S, Heinen S, Smith L, Wyckoff M, Dill-Macky R, Evans C, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer G (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

    Article  PubMed  CAS  Google Scholar 

  • Maziah M, Saraih M, Sreeramanan S (2007) Transgenic banana Rastali (AAB) with β-1,3-glucanase gene for tolerance to Fusarium wilt race 1 disease via Agrobacterium-mediated transformation system. Plant Pathology J 6:271–282

    Article  CAS  Google Scholar 

  • Mohamed MA, Shousha WG, Mahdy EsM, Ghazy AEM, Mohamed MM (2007) Biochemical alterations induced in tomato in response to Fusarium oxysporum infection: purification and characterization of an acidic β-1,3-glucanase. Res J Agric Biol Sci 3:939–949

    CAS  Google Scholar 

  • Mohammadi M, Karr AL (2002) β-1,3-Glucanase and chitinase activities in soybean root nodules. J Plant Physiol 159:245–256

    Article  CAS  Google Scholar 

  • Mondal K, Bhattacharya R, Koundal K, Chatterjee S (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE (2001) Plant mechanisms that give defence against soilborne diseases. Australas Plant Pathol 30:99–102

    Article  Google Scholar 

  • Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  PubMed  CAS  Google Scholar 

  • Płażek A, Skoczowski A, Hura K, Libik M, Barna B (2009) Accumulation of H2O2 and changes in activities of antioxidative enzymes and β-1,3-glucanase in barley and meadow fescue leaves attacked by Bipolaris sorokiniana. Cereal Res Commun 37:399–408

    Article  Google Scholar 

  • Ramesh Sundar A, Velazhahan R, Nagarathinam S, Vidhyasekaran P (2008) Induction of pathogenesis-related proteins in sugarcane leaves and cell-cultures by a glycoprotein elicitor isolated from Colletotrichum falcatum. Biol Plant 52:321–328

    Article  Google Scholar 

  • Romero I, Fernandez-Caballero C, Goñi O, Escribano MI, Merodio C, Sanchez-Ballesta MT (2008) Functionality of a class I β-1,3-glucanase from skin of table grapes berries. Plant Sci 174:641–648

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Salim AP, Saminaidu K, Marimuthu M, Perumal Y, Rethinasamy V, Palanisami JR, Vadivel K (2011) Defense responses in tomato landrace and wild genotypes to early blight pathogen Alternaria solani infection and accumulation of pathogenesis-related proteins. Arch Phytopathol Plant Prot 44:1147–1164

    Article  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Zacarias L, Granell A, Lafuente MT (2008) β-1,3-Glucanase gene expression as a molecular marker for postharvest physiological disorders in citrus fruit and its hormonal regulation. Postharvest Biol Tech 48:146–149

    Article  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck B, Cammue B, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Zhang Y, Shih DS (2006) Cloning and expression analysis of two β-1,3-glucanase genes from strawberry. J Plant Physiol 163:956–967

    Article  PubMed  CAS  Google Scholar 

  • Silvar C, Merino F, Díaz J (2009) Resistance in pepper plants induced by Fusarium oxysporum f. sp. lycopersici involves different defence-related genes. Plant Biol 11:68–74

    Article  PubMed  CAS  Google Scholar 

  • Somssich IE, Hahlbrock K (1998) Pathogen defence in plants-a paradigm of biological complexity. Trends Plant Sci 3:86–90

    Article  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    Article  CAS  Google Scholar 

  • Sundaresha S, Manoj Kumar A, Rohini S, Math S, Keshamma E, Chandrashekar S, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β-1,3-glucanase. Eur J Plant Pathol 126:497–508

    Article  CAS  Google Scholar 

  • Takeda H, Yoshikawa T, Liu XZ, Nakagawa N, Li YQ, Sakurai N (2004) Molecular cloning of two exo-β-glucanases and their in vivo substrates in the cell walls of lily pollen tubes. Plant Cell Physiol 45:436–444

    Article  PubMed  CAS  Google Scholar 

  • Thanseem I, Joseph A, Thulaseedharan A (2005) Induction and differential expression of β-1,3-glucanase mRNAs in tolerant and susceptible Hevea clones in response to infection by Phytophthora meadii. Tree Physiol 25:1361–1368

    Article  PubMed  CAS  Google Scholar 

  • Tian SP, Yao HJ, Deng X, Xu XB, Qin GZ, Chan ZL (2007) Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology 97:260–268

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    Article  CAS  Google Scholar 

  • Wan L, Zha W, Cheng X, Liu C, Lv L, Liu C, Wang Z, Du B, Chen R, Zhu L (2010) A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta 233:1–15

    Google Scholar 

  • Wang W, Bianchi L, Scali M, Liu L, Bini L, Cresti M (2009) Proteomic analysis of β-1,3-glucanase in grape berry tissues. Acta Physiol Plant 31:594–597

    Google Scholar 

  • Wrobel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmianski J, Kepczynska E, Szopa J (2004) Expression of β-1,3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 65:245–256

    Article  CAS  Google Scholar 

  • Yaish MWF, Doxey AC, McConkey BJ, Moffatt BA, Griffith M (2006) Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol 141:1459–1472

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sakthivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, V., Vashisht, D., Cletus, J. et al. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34, 1983–1990 (2012). https://doi.org/10.1007/s10529-012-1012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1012-6

Keywords

Navigation