Skip to main content

Advertisement

Log in

Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Microbial polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms as intracellular granules under nutrient stress. Due to non-toxic and biodegradable behavior these polyesters are a sustainable source of wide range of biomaterials such as bioplastics. As a result of excellent polymeric properties such as melting temperatures (Tm), glass transition temperature (Tg), crystallinity, Young’s modulus and stress to break ratio these polyesters are capable of replacing the synthetic plastics. Bioplastics produced using PHAs as biomass source can be used for packaging material and disposable products on the other hand biofuels can also be generated using PHAs. PHAs find countless applications in industry, agriculture, pharmaceuticals and health. A large number of bacterial, microalgal and fungal species can produce these polyesters. Bacterial species such as Bacillus megaterium, Pseudomonas aeruginosa, P. oleovorans, P. stutzeri and Cupriavidus necator are some highly studied microorganisms for PHA production. This review summarizes the most important aspects of PHAs, crystalline and granular structure of PHA biosynthesizing genes and their relevant proteins. Thermal and physical properties, sources, extraction, purification methods of PHAs are briefly discussed. Applications of PHAs, phylogenetic analysis of Pseudomonas sp. in term of its PHAs synthesizing genes, future prospects and possible outcomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wagner TP (2017) Reducing single-use plastic shopping bags in the USA. Waste Manag 70:3–12. https://doi.org/10.1016/j.wasman.2017.09.003

    Article  PubMed  Google Scholar 

  2. Abbasi K (2020) Bad science in a plastic world. J R Soc Med 113:47. https://doi.org/10.1177/0141076820905749

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esan EO, Abbey L, Yurgel S (2019) Exploring the long-term effect of plastic on compost microbiome. PLoS ONE 14:1–17. https://doi.org/10.1371/journal.pone.0214376

    Article  CAS  Google Scholar 

  4. Jain P (2017) Effect of biodegradation and non degradable substances in environment. Int J Life Sci 1:50–55. https://doi.org/10.21744/ijls.v1i1.24

  5. Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395. https://doi.org/10.1016/j.envpol.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  6. Peng G, Bellerby R, Zhang F, Sun X, Li D (2020) The ocean’s ultimate trashcan: hadal trenches as major depositories for plastic pollution. Water Res 168:115–121. https://doi.org/10.1016/j.watres.2019.115121

    Article  CAS  Google Scholar 

  7. WEF World Economic Forum (2019) Top 10 emerging technologies 2019, World Econ. Forum Annu. Meet. 2019, pp 4–15. www.weforum.org

  8. Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197:177–198. https://doi.org/10.1016/j.jenvman.2017.03.084

    Article  CAS  Google Scholar 

  9. Almeida D, de Marque MF (2015) Thermal and catalytic pyrolysis of polyethylene plastic waste in Semi. Polimeros. 26:1–8. https://doi.org/10.1590/0104-1428.2100

  10. Adrados A, de Marco I, Caballero BM, López A, Laresgoiti MF, Torres A (2012) Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manag. 32:826–832. https://doi.org/10.1016/j.wasman.2011.06.016

    Article  CAS  PubMed  Google Scholar 

  11. Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ (2019) A catchment-scale perspective of plastic pollution. Glob Chang Biol 25:1207–1221. https://doi.org/10.1111/gcb.14572

    Article  PubMed Central  Google Scholar 

  12. McClements DJ, Gumus CE (2016) Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv Colloid Interface Sci 234:3–26. https://doi.org/10.1016/j.cis.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Demirbas A (2007) Biodegradable plastics from renewable resources, energy sources, part a recover. Util Environ Eff 29:419–424. https://doi.org/10.1080/009083190965820

    Article  CAS  Google Scholar 

  14. Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260. https://doi.org/10.1016/S1369-5274(03)00040-7

    Article  CAS  PubMed  Google Scholar 

  15. Aljuraifani AA, Berekaa MM, Ghazwani AA (2019) Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. Microbiologyopen. 8:1–7. https://doi.org/10.1002/mbo3.755

    Article  CAS  Google Scholar 

  16. Sedlacek P, Slaninova E, Koller M, Nebesarova J, Marova I, Krzyzanek V, Obruca S (2019) PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. N Biotechnol 49:129–136. https://doi.org/10.1016/j.nbt.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  18. Sagong HY, Son HF, Choi SY, Lee SY, Kim KJ (2018) Structural Insights into polyhydroxyalkanoates biosynthesis. Trends Biochem Sci 43:790–805. https://doi.org/10.1016/j.tibs.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  19. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36:856–870. https://doi.org/10.1016/j.biotechadv.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  20. Jain R, Kosta S, Tiwari A (2010) Polyhydroxyalkanoates: a way to sustainable development of bioplastics. Chronicles Young Sci. 1:10–15. https://doi.org/10.4103/4444-4443.76448

    Article  CAS  Google Scholar 

  21. Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23:1–20. https://doi.org/10.3390/molecules23020362

    Article  CAS  Google Scholar 

  22. Grigore ME, Grigorescu RM, Iancu L, Ion RM, Zaharia C, Andrei ER (2019) Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. J Biomater Sci Polym Ed 30:695–712. https://doi.org/10.1080/09205063.2019.1605866

    Article  CAS  PubMed  Google Scholar 

  23. Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME (2019) Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 282:361–369. https://doi.org/10.1016/j.biortech.2019.03.037

    Article  CAS  PubMed  Google Scholar 

  24. Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, Samantaray D (2017) Bacillus and biopolymer: prospects and challenges. Biochem. Biophys. Reports. 12:206–213. https://doi.org/10.1016/j.bbrep.2017.10.001

    Article  Google Scholar 

  25. Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T (2019) Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng 128:203–208. https://doi.org/10.1016/j.jbiosc.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  26. Williams SF, Rizk S, Martin DP (2013) Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomed Tech 58:439–452. https://doi.org/10.1515/bmt-2013-0009

    Article  CAS  Google Scholar 

  27. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Alexopoulou E, Bikiaris DN (2015) Green composites prepared from aliphatic polyesters and bast fibers. Ind Crops Prod 68:60–79. https://doi.org/10.1016/j.indcrop.2014.08.034

    Article  CAS  Google Scholar 

  28. Rhodes CJ (2018) Plastic pollution and potential solutions. Sci Prog 101:207–260. https://doi.org/10.3184/003685018x15294876706211

    Article  CAS  PubMed  Google Scholar 

  29. Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F (2019) Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. N Biotechnol 52:35–41. https://doi.org/10.1016/j.nbt.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  30. Cozar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-Puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111:10239–10244. https://doi.org/10.1073/pnas.1314705111

    Article  CAS  PubMed  Google Scholar 

  31. Scalenghe R (2018) Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon. 4:e00941. https://doi.org/10.1016/j.heliyon.2018.e00941

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brandon AM, Criddle CS (2019) Can biotechnology turn the tide on plastics? Curr Opin Biotechnol 57:160–166. https://doi.org/10.1016/j.copbio.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  33. Kalia VC, Ray S, Patel SKS, Singh M, Singh GP (2019) The dawn of novel biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, In: Kalia VC (Ed), Biotechnol Appl Polyhydroxyalkanoates.. https://doi.org/10.1007/978-981-13-3759-8_1

  34. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym. Lett. 5:620–634. https://doi.org/10.3144/expresspolymlett.2011.60

    Article  Google Scholar 

  35. Sohn YJ, Kim HT, Baritugo KA, Song HM, Ryu MH, Kang KH, Jo SY, Kim H, Kim YJ, Il Choi J, Park SK, Joo JC, Park SJ (2020) Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. Int J Biol Macromol 149: 593–599. https://doi.org/10.1016/j.ijbiomac.2020.01.254

  36. Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103:143–157. https://doi.org/10.1007/s00253-018-9483-6

    Article  CAS  PubMed  Google Scholar 

  37. Dietrich K, Dumont MJ, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy — Towards a sustainable bioplastic. Sustain. Prod. Consum. 9:58–70. https://doi.org/10.1016/j.spc.2016.09.001

    Article  Google Scholar 

  38. Kates RW, Parris TM, Leiserowitz AA (2005) What is sustainable development? Goals, indicators, values, and practice, Environment. 47:8–21. https://doi.org/10.1080/00139157.2005.10524444

    Article  Google Scholar 

  39. Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. Microbiol Monogr. https://doi.org/10.1007/7171_005

  40. Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 126:45–56. https://doi.org/10.1016/j.ibiod.2017.10.001

    Article  CAS  Google Scholar 

  41. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12. https://doi.org/10.1007/s00253-006-0732-8

    Article  CAS  PubMed  Google Scholar 

  42. Johnston B, Radecka I, Hill D, Chiellini E, Ilieva VI, . Sikorska W, Musioł M, Ziȩba M, Marek AA, Keddie D, Mendrek B, Darbar S, Adamus G, Kowalczuk M (2018) The microbial production of polyhydroxyalkanoates from waste polystyrene fragments attained using oxidative degradation. Polymers (Basel). https://doi.org/10.3390/polym10090957

  43. Mozejko-Ciesielska J, Szacherska K, Marciniak P (2019) Pseudomonas Species as producers of eco-friendly polyhydroxyalkanoates. J Polym Environ 27:1151–1166. https://doi.org/10.1007/s10924-019-01422-1

    Article  CAS  Google Scholar 

  44. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater. Sci. Eng. R Reports. 72:29–47. https://doi.org/10.1016/j.mser.2010.11.002

    Article  CAS  Google Scholar 

  45. Wang S, Chen W, Xiang H, Yang J, Zhou Z, Zhu M (2016) Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers (Basel). https://doi.org/10.3390/polym8080273

  46. Pundsack AL, Bluhm TL (1981) Technique for determining unit-cell constants of polyhydroxyvalerate using electron diffraction. J Mater Sci 16:545–547. https://doi.org/10.1007/BF00738652

    Article  CAS  Google Scholar 

  47. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583. https://doi.org/10.1016/j.progpolymsci.2012.06.003

    Article  CAS  Google Scholar 

  48. Cornibert J, Marchessault RH (1972) Physical properties of poly-β-hydroxybutyrate. IV. Conformational analysis and crystalline structure. . Mol Biol 71: 735–756. https://doi.org/10.1016/S0022-2836(72)80035-4

  49. Sato H, Murakami R, Mori K, Ando Y, Takahashi I, Noda I, Ozaki Y (2009) Specific crystal structure of poly(3-hydroxybutyrate) thin films studied by infrared reflection-absorption spectroscopy. Vib Spectrosc 51:132–135. https://doi.org/10.1016/j.vibspec.2008.11.010

    Article  CAS  Google Scholar 

  50. Marchessault RH, Debzi EM, Revol JF, Steinbuchel A (1995) Single crystals of bacterial and synthetic poly(3-hydroxyvalerate). Can J Microbiol 41:297–302. https://doi.org/10.1139/m95-200

    Article  CAS  Google Scholar 

  51. Lambeek G, Vorenkamp EJ, Schouten AJ (1995) Structural Study of Langmuir Blodgett Mono- and multilayers of poly(β-hydroxybutyrate). Macromolecules 28:2023–2032. https://doi.org/10.1021/ma00110a041

    Article  CAS  Google Scholar 

  52. Yamane H, Terao K, Hiki S, Kimura Y (2001) Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer (Guildf). 42:3241–3248. https://doi.org/10.1016/S0032-3861(00)00598-X

    Article  CAS  Google Scholar 

  53. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  CAS  Google Scholar 

  54. Rehm BHA, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19. https://doi.org/10.1016/S0141-8130(99)00010-0

    Article  CAS  PubMed  Google Scholar 

  55. Grage K, Jahns AC, Parlane N, Rajasekaran Palanisamy IAR, Atwood JA, Rehm BHA (2003) Bacterial polyhydroxyalkanoate granules: Biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biochem J 376:15–33. https://doi.org/10.1042/BJ20031254

  56. Wang L, Liu Q, Wu X, Huang Y, Wise MJ, Liu Z, Wang W, Hu J, Wang C (2019) Bioinformatics analysis of metabolism pathways of archaeal energy reserves. Sci. Rep. 9:1–12. https://doi.org/10.1038/s41598-018-37768-0

    Article  CAS  Google Scholar 

  57. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. https://doi.org/10.1007/s00253-009-2397-6

    Article  CAS  PubMed  Google Scholar 

  58. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 83:233–247. https://doi.org/10.1002/jctb

    Article  Google Scholar 

  59. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202. https://doi.org/10.1128/JB.01723-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koller M (2019) Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? EuroBiotech J. 3:32–44. https://doi.org/10.2478/ebtj-2019-0004

    Article  Google Scholar 

  61. Bernard M (2014) Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. USURJ Univ Saskatchewan Undergrad Res J. https://doi.org/10.32396/usurj.v1i1.55

  62. Chodak I (2008) Polyhydroxyalkanoates: origin, properties and applications. Monomers Polym Compos from Renew Resour. https://doi.org/10.1016/B978-0-08-045316-3.00022-3

  63. Nahar S, Jeong MH, Hur JS (2019) Lichen-associated bacterium, a novel bioresource of polyhydroxyalkanoate (PHA) production and simultaneous degradation of naphthalene and anthracene. J Microbiol Biotechnol 29:79–90. https://doi.org/10.4014/jmb.1808.08037

    Article  CAS  PubMed  Google Scholar 

  64. Koller M (2017) Production of Polyhydroxyalkanoate (PHA) Biopolyesters by extremophiles?, MOJ Polym. Sci. https://doi.org/10.15406/mojps.2017.01.00011

  65. Hawas JME-M, El-Banna TE-S, El-Aziz EBABAA (2016) Production of bioplastic from some selected bacterial strains. Int J Curr Microbiol Appl Sci 5:10–22. https://doi.org/10.20546/ijcmas.2016.501.002

  66. Favaro L, Basaglia M, Rodriguez JEG, Morelli A, Ibraheem O, Pizzocchero V, Casella S (2019) Bacterial production of PHAs from lipid-rich by-products. Appl Food Biotechnol 6:45–52. https://doi.org/10.22037/AFB.V6I1.22246

  67. Peña C, Castillo T, García A, Millán M, Segura D (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–293. https://doi.org/10.1111/1751-7915.12129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Favaro L, Basaglia M, Casella S (2019) Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review, Biofuels. Bioprod. Biorefining. 13:208–227. https://doi.org/10.1002/bbb.1944

    Article  CAS  Google Scholar 

  69. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:https://doi.org/10.3390/ijms17071157

  70. Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Song H, Kim KH, Kwon EE, Jeon YJ (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644. https://doi.org/10.1016/j.envint.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  71. de Paula FC, Kakazu S, de Paula CBC, Gomez JGC, Contiero J (2017) Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp. J. King Saud Univ. - Sci. 29:166–173. https://doi.org/10.1016/j.jksus.2016.07.002

    Article  Google Scholar 

  72. Higuchi-Takeuchi M, Morisaki K, Toyooka K, Numata K (2016) Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. PLoS ONE 11:1–17. https://doi.org/10.1371/journal.pone.0160981

    Article  CAS  Google Scholar 

  73. Raza ZA, Tariq MR, Majeed MI, Banat IM (2019) Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 42:901–919. https://doi.org/10.1007/s00449-019-02093-x

    Article  CAS  PubMed  Google Scholar 

  74. Gopi S, Kontopoulou M, Ramsay BA, Ramsay JA (2018) Manipulating the structure of medium-chain-length polyhydroxyalkanoate (mcl-PHA) to enhance thermal properties and crystallization kinetics. Int J Biol Macromol 119:1248–1255. https://doi.org/10.1016/j.ijbiomac.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  75. Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M (2013) Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived Waste. J Biotechnol 165:45–51. https://doi.org/10.1016/j.jbiotec.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  76. Cerrone F, Choudhari SK, Davis R, Cysneiros D, O’Flaherty V, Duane G, Casey E, Guzik MW, Kenny ST, Babu RP, O’Connor K (2014) Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Appl Microbiol Biotechnol 98:611–620. https://doi.org/10.1007/s00253-013-5323-x

    Article  CAS  PubMed  Google Scholar 

  77. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  CAS  PubMed  Google Scholar 

  78. Sanhueza F, Acevedo S, Rocha P, Villegas M, Seeger R (2019) Navia, Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 124:102–110. https://doi.org/10.1016/j.ijbiomac.2018.11.068

    Article  CAS  PubMed  Google Scholar 

  79. Matsumoto K, Aoki E, Takase K, Doi Y, Taguchi S (2006) In vivo and in vitro characterization of Ser477X mutations polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules 7:2436–2442. https://doi.org/10.1021/bm0602029

  80. Rahman A, Linton E, Hatch AD, Sims RC, Miller CD (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J. Biol. Eng. 7:1–9. https://doi.org/10.1186/1754-1611-7-24

    Article  CAS  Google Scholar 

  81. Chen GQ, Jiang XR (2018) Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol 53:20–25. https://doi.org/10.1016/j.copbio.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  82. Lv L, Ren YL, Chen JC, Wu Q, Chen GQ (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168. https://doi.org/10.1016/j.ymben.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  83. Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65. https://doi.org/10.1016/j.jbiotec.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  84. Aldor IS, Kim SW, Jones Prather KL, Keasling JD (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl Environ Microbiol 68:3848–3854. https://doi.org/10.1128/AEM.68.8.3848-3854.2002

  85. Wu H, Chen J, Chen G-Q (2016) Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Appl Microbiol Biotechnol 100:9907–9916. https://doi.org/10.1007/s00253-016-7715-1

    Article  CAS  PubMed  Google Scholar 

  86. Wu H, Fan Z, Jiang X, Chen J, Chen GQ (2016) Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbiol Cell Fact 15:1–13. https://doi.org/10.1186/s12934-016-0531-6

  87. Chen GQ, Hajnal I, Wu H, Lv L, Ye J (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33:565–574. https://doi.org/10.1016/j.tibtech.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  88. Amelia TSM, Sharumathiy Govindasamy S, Tamothran AM, Bhuvaneswar K, Vigneswari S (2019) Biotechnological applications of polyhydroxyalkanoates. Appl PHA Agric. https://doi.org/10.1007/978-981-13-3759-8

  89. Gao X, Chen JC, Wu Q, Chen GQ (2011) Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 22:768–774. https://doi.org/10.1016/j.copbio.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  90. Sidek IS, Fauziah S, Draman S, Rozaimah S, Abdullah S, Anuar N (2019) Current developement on bioplastics and its future prospects: an introductory review. I Tech Mag 1:3–8. https://doi.org/10.26480/itechmag.01.2019.03.08 CURRENT

  91. Li T, Elhadi D, Chen GQ (2017) Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng 43:29–36. https://doi.org/10.1016/j.ymben.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  92. Bassas-Galiàa M, Adolfo Gonzaleza F, Micauxa VG, Umberto Piantinia S, Schintkeb MZ, Mathieu M (2015) Chemical modification of polyhydroxyalkanoates (PHAs) for the preparation of hybrid biomaterials. Chimia (Aarau). 69:627–630. https://doi.org/10.2533/chimia.2015.627

  93. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J. Packag. Technol. Res. 3:77–96. https://doi.org/10.1007/s41783-018-0049-y

    Article  Google Scholar 

  94. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J Plast Film Sheeting 23:133–148. https://doi.org/10.1177/8756087907083590

    Article  CAS  Google Scholar 

  95. Khosravi-Darani K, Bucci DZ (2015) Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29:275–285. https://doi.org/10.15255/CABEQ.2014.2260

  96. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53. https://doi.org/10.1128/mmbr.63.1.21-53.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326. https://doi.org/10.1016/j.mib.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  98. Zhang X, Luo R, Wang Z, Deng Y, Chen GQ (2009) Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromol 10:707–711. https://doi.org/10.1021/bm801424e

    Article  CAS  Google Scholar 

  99. Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227. https://doi.org/10.1038/nchembio.537

    Article  CAS  PubMed  Google Scholar 

  100. Johnson K, Jiang Y, Kleerebezem R, Muyzer G, Van Loosdrecht MCM (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromol 10:670–676. https://doi.org/10.1021/bm8013796

    Article  CAS  Google Scholar 

  101. Chen G-Q (2011) Biofunctionalization of polymers and their applications. Adv Biochem Eng Biotechnol 125:29–45. https://doi.org/10.1007/10_2010_89

    Article  CAS  PubMed  Google Scholar 

  102. Ren Q, Ruth K, Thöny-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87:41–52. https://doi.org/10.1007/s00253-010-2530-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hungund BS, Umloti SG, Upadhyaya KP, Manjanna J, Yallappa S, Ayachit NH (2018) Development and characterization of polyhydroxybutyrate biocomposites and their application in the removal of heavy metals. Mater. Today Proc. 5:21023–21029. https://doi.org/10.1016/j.matpr.2018.6.495

    Article  CAS  Google Scholar 

  104. Moradali MF, Rehm BHA (2020) Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. https://doi.org/10.1038/s41579-019-0313-3

    Article  PubMed  PubMed Central  Google Scholar 

  105. Allen AD, Daley P, Ayorinde FO, Gugssa A, Anderson WA, Eribo BE (2012) Characterization of medium chain length (R)-3-hydroxycarboxylic acids produced by Streptomyces sp. JM3 and the evaluation of their antimicrobial properties. World J Microbiol Biotechnol 28:2791–2800. https://doi.org/10.1007/s11274-012-1089-z

  106. Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L (2016) The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 41:600–609. https://doi.org/10.1007/s11064-015-1700-4

    Article  CAS  PubMed  Google Scholar 

  107. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J. Microbiol. 57:261–269. https://doi.org/10.1007/s12088-017-0651-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zou XH, Li HM, Wang S, Leski M, Yao YC, Di Yang X, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541. https://doi.org/10.1016/j.biomaterials.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  109. Tokiwa Y, Calabia BP (2007) Biodegradability and biodegradation of polyesters. J Polym Environ 15:259–267. https://doi.org/10.1007/s10924-007-0066-3

    Article  CAS  Google Scholar 

  110. Ali N (2016) Jamil, Polyhydroxyalkanoates: current applications in the medical field. Front. Biol. (Beijing) 11:19–27. https://doi.org/10.1007/s11515-016-1389-z

    Article  CAS  Google Scholar 

  111. Kehail AA, Brigham CJ (2017) Anti-biofilm activity of solvent-cast and electrospun polyhydroxyalkanoate membranes treated with lysozyme. J Polym Environ 26:66–72. https://doi.org/10.1007/s10924-016-0921-1

    Article  CAS  Google Scholar 

  112. Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG (2016) Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci Mater Med 27:0–1. https://doi.org/10.1007/s10856-016-5776-4

    Article  CAS  Google Scholar 

  113. Francis L, Meng D, Locke IC, Knowles JC, Mordan N, Salih V, Boccaccini AR, Roy I (2016) Novel poly(3-hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. Polym Int 65:661–674. https://doi.org/10.1002/pi.5108

    Article  CAS  Google Scholar 

  114. Sangsanoh P, Israsena N, Suwantong O, Supaphol P (2017) Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro 2a cell line. Polym Bull 74:4101–4118. https://doi.org/10.1007/s00289-017-1947-9

    Article  CAS  Google Scholar 

  115. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2009) Short-chain fatty acids and poly-β-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685. https://doi.org/10.1016/j.biotechadv.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  116. Martínez V, Dinjaski N, de Eugenio LI, de la Peña F, Prieto MA (2014) Cell system engineering to produce extracellular polyhydroxyalkanoate depolymerase with targeted applications. Int J Biol Macromol 71:28–33. https://doi.org/10.1016/j.ijbiomac.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  117. Shah M, Ullah N, Choi MH, Yoon SC (2014) Nanoscale poly(4-hydroxybutyrate)-mPEG carriers for anticancer drugs delivery. J Nanosci Nanotechnol 14:8416–8421. https://doi.org/10.1166/jnn.2014.9924

    Article  CAS  PubMed  Google Scholar 

  118. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. https://doi.org/10.1016/j.biomaterials.2005.04.036

    Article  CAS  PubMed  Google Scholar 

  119. Thomas T, Elain A, Bazire A, Bruzaud S (2019) Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 35: 1–14. https://doi.org/10.1007/s11274-019-2627-8

  120. Hang X, Zhang G, Wang G, Zhao X, Chen GQ (2002) PCR cloning of polyhydroxyalkanoate biosynthesis genes from Burkholderia caryophylli and their functional expression in recombinant Escherichia coli. FEMS Microbiol Lett 210:49–54. https://doi.org/10.1016/S0378-1097(02)00594-3

    Article  CAS  PubMed  Google Scholar 

  121. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065. https://doi.org/10.1128/AEM.00953-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243. https://doi.org/10.1128/JB.183.14.4235-4243.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T (2003) Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 185:3485–3490. https://doi.org/10.1128/JB.185.12.3485-3490.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pfeiffer D, Jendrossek D (2014) PhaM Is the Physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha. Appl Environ Microbiol 80:555–563. https://doi.org/10.1128/AEM.02935-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. de Almeida A, Catone MV, Rhodius VA, Gross CA, Pettinari MJ (2011) Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli. Appl Environ Microbiol 77: 6622–6629. https://doi.org/10.1128/AEM.05469-11

  126. Galán B, Dinjaski N, Maestro B, De Eugenio LI, Escapa IF, Sanz JM, García JL, Prieto MA (2011) Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79:402–418. https://doi.org/10.1111/j.1365-2958.2010.07450.x

    Article  CAS  PubMed  Google Scholar 

  127. Dinjaski N, Prieto MA (2013) Swapping of phasin modules to optimize the in vivo immobilization of proteins to medium-chain-length polyhydroxyalkanoate granules in pseudomonas putida. Biomacromol 14:3285–3293. https://doi.org/10.1021/bm4008937

    Article  CAS  Google Scholar 

  128. Pieper-Furst U, Madkour MH, Mayer F, Steinbuchel A (1995) Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 177:2513–2523. https://doi.org/10.1128/jb.177.9.2513-2523.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek V, Jendrossek D (2004) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (Phasin). J Bacteriol 186:2466–2475. https://doi.org/10.1128/JB.186.8.2466-2475.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D (2005) The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425. https://doi.org/10.1128/JB.187.7.2416-2425.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sabapathy PC, Devaraj S, Parthiban A, Kathirvel P (2018) Bioprocess optimization of PHB homopolymer and copolymer P3 (HB-co-HV) by Acinetobacter junii BP25 utilizing rice mill effluent as sustainable substrate. Environ. Technol. (United Kingdom) 39:1430–1441. https://doi.org/10.1080/09593330.2017.1330902

    Article  CAS  Google Scholar 

  132. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Industrial production of PHA from waste raw materials. Plast. from Bact. 14:85–119. https://doi.org/10.1007/978-3-642-03287

    Article  Google Scholar 

  133. Ganapathy K, Ramasamy R, Dhinakarasamy I (2018) Polyhydroxybutyrate production from marine source and its application. Int J Biol Macromol 111:102–108. https://doi.org/10.1016/j.ijbiomac.2017.12.155

    Article  CAS  Google Scholar 

  134. Singh AK, Mallick N (2017) Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett 364:1–13. https://doi.org/10.1093/femsle/fnx189

    Article  CAS  Google Scholar 

  135. Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria - The metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42. https://doi.org/10.1016/S0141-8130(99)00013-6

    Article  CAS  PubMed  Google Scholar 

  136. Ansari S, Fatma T (2016) Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS ONE 11:1–20. https://doi.org/10.1371/journal.pone.0158168

    Article  CAS  Google Scholar 

  137. Koller M, Salerno A, Dias M, Reiterer A, Braunegg G (2010) Modern biotechnological polymer synthesis: a review. Food Technol. Biotechnol. 48:255–269

    CAS  Google Scholar 

  138. Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym. - Plast. Technol. Eng. 43:1779–1793. https://doi.org/10.1081/PPT-200040130

    Article  CAS  Google Scholar 

  139. Sathya AB, Sivasubramanian V, Santhiagu A, Sebastian C, Sivashankar R (2018) Production of polyhydroxyalkanoates from renewable sources using bacteria. J Polym Environ 26:3995–4012. https://doi.org/10.1007/s10924-018-1259-7

    Article  CAS  Google Scholar 

  140. Koller M, Braunegg G (2015) Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering. 2:94–121. https://doi.org/10.3390/bioengineering2020094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Noha SE, Khaled MA, Mohammad MA, Nadia AH (2013) Optimization of bioplastic (poly–hydroxybutyrate) production by a promising Azomonas macrocytogenes bacterial isolate P173. African J. Microbiol. Res. 7:5025–5035. https://doi.org/10.5897/ajmr2013.6060

    Article  Google Scholar 

  142. Kadouri D, Jurkevitch E, Okon Y (2003) Poly β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol 180:309–318. https://doi.org/10.1007/s00203-003-0590-z

    Article  CAS  PubMed  Google Scholar 

  143. Valentino F, Morgan-Sagastume F, Fraraccio S, Corsi G, Zanaroli G, Werker A, Majone M (2015) Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production. Environ Sci Pollut Res 22:7281–7294. https://doi.org/10.1007/s11356-014-3268-y

    Article  CAS  Google Scholar 

  144. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) PHA staining Nile red plates. Arch Microbiol 171:73–80

    Article  CAS  Google Scholar 

  145. Villano M, Beccari M, Dionisi D, Lampis S, Miccheli A, Vallini G, Majone M (2010) Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochem 45:714–723. https://doi.org/10.1016/j.procbio.2010.01.008

    Article  CAS  Google Scholar 

  146. Otari SV, Ghosh JS (2009) Production and Characterization of the polymer polyhydroxy butyrate-co- polyhydroxy valerate by Bacillus Megaterium NCIM 2475. Curr. Res. J. Biol. Sci. 1:23–26

    CAS  Google Scholar 

  147. Braunegg G, Bona R, Schellauf F, Wallner E (2002) Polyhydroxyalkanoates (PHAs): sustainable biopolyester production. Polimery/Polymers 47:479–484. https://doi.org/10.14314/polimery.2002.479

  148. Aljuraifani AA, Berekaa MM, Ghazwani AA (2018) Perspectives of polyhydroxyalkanoate (PHAs) biopolymer production using indigenous bacteria: screening and characterization. J Pure Appl Microbiol 12: 1997–2009. https://doi.org/10.22207/JPAM.12.4.36

  149. Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218. https://doi.org/10.1007/s00253-006-0458-7

  150. Rostkowski KH, Pfluger AR, Criddle CS (2013) Bioresource technology stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77. https://doi.org/10.1016/j.biortech.2012.12.129

    Article  CAS  PubMed  Google Scholar 

  151. Urbanek AK, Mirończuk AM, García-Martín A, Saborido A, de la Mata I, Arroyo M (2020) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochim. Biophys. Acta - Proteins Proteomics. 1868:140315. https://doi.org/10.1016/j.bbapap.2019.140315

    Article  CAS  PubMed  Google Scholar 

  152. Ghatnekar MS, Pai JS, Ganesh M (2002) Production and recovery of poly-3-hydroxy-butyrate from Methylobacterium sp V49. J Chem Technol Biotechnol 77:444–448. https://doi.org/10.1002/jctb.570

    Article  CAS  Google Scholar 

  153. Luangthongkam P, Strong PJ, Syed Mahamud SN, Evans P, Jensen P, Tyson G, Laycock B, Lant PA, Pratt S (2019) The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresour Bioprocess 6:1–10. https://doi.org/10.1186/s40643-019-0285-1

  154. Amaro TMMM, Rosa D, Comi G, Iacumin L (2019) Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Front. Microbiol. 10:1–12. https://doi.org/10.3389/fmicb.2019.00992

    Article  Google Scholar 

  155. Sangkharak K, Prasertsan P (2008) Nutrient optimization for production of polyhydroxybutyrate from halotolerant photosynthetic bacteria cultivated under aerobic-dark condition. Electron J Biotechnol. https://doi.org/10.2225/vol11-issue3-fulltext-2

  156. Hall B, Baldwin J, Rhie HG, Dennis D (1998) Cloning of the Nocardia corallina polyhydroxyalkanoate synthase gene and production of poly-(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly-(3- hydroxyvalerate-co-3-hydroxyheptanoate). Can J Microbiol 44:687–691. https://doi.org/10.1139/cjm-44-7-687

    Article  CAS  PubMed  Google Scholar 

  157. Kim YB, Lenz RW (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79. https://doi.org/10.1007/3-540-40021-4_2

    Article  CAS  PubMed  Google Scholar 

  158. Sawant SS, Salunke BK, Kim BS (2015) Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour Technol 194:247–255. https://doi.org/10.1016/j.biortech.2015.07.019

  159. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Industrial production of PHA from waste raw materials, G.-Q. Chen (Ed), Plast from Bact Nat Funct Appl Microbiol Monogr 14:85–119. https://doi.org/10.1007/978-3-642-03287

  160. Wang Q, Nomura CT (2010) Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J Biosci Bioeng 110:653–659. https://doi.org/10.1016/j.jbiosc.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  161. Zhang S, Kolvek S, Goodwin S, Lenz R (2003) Poly(hydroxyalkanoic acid) Biosynthesis in Ectothiorhodospira haposhnikovii: characterization and reactivity of a type III PHA Synthase. Biomacromol 5:40–48. https://doi.org/10.1021/bm034171i

    Article  CAS  Google Scholar 

  162. Santhanam A, Sasidharan S (2010) Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. African J Biotechnol 9:3144–3150. https://doi.org/10.5897/AJB2010.000-3156

  163. Vidal-Mas J, Resina-Pelfort O, Haba E, Comas J, Manresa A, Vives-Rego J (2001) Rapid flow cytometry - Nile red assessment of PHA cellular content and heterogeneity in cultures of Pseudomonas aeruginosa 47T2 (NCIB 40044) grown in waste frying oil, Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 80:57–63. https://doi.org/10.1023/A:1012208225286

    Article  CAS  Google Scholar 

  164. Kaur L, Khajuria R, Parihar L, Dimpal Singh G (2017) Polyhydroxyalkanoates: Biosynthesis to commercial production—a review. J Microbiol Biotechnol Food Sci 6:1098–1106. https://doi.org/10.15414/jmbfs.2017.6.4.1098-1106

  165. Khare E, Chopra J, Arora NK (2014) Screening for mcl-PHA-producing fluorescent pseudomonas and comparison of mcl-PHA production under iso-osmotic conditions induced by PEG and NaCl. Curr Microbiol 68:457–462. https://doi.org/10.1007/s00284-013-0497-0

    Article  CAS  PubMed  Google Scholar 

  166. Chee J, Yoga S, Lau N, Ling S, Abed RMM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol A Mendez-Vilas 1:1395–1404

  167. Kemavongse K, Prasertsan P, Upaichit A, Methacanon P (2008) Poly-β-hydroxyalkanoate production by halotolerant Rhodobacter sphaeroides U7. World J Microbiol Biotechnol 24:2073–2085. https://doi.org/10.1007/s11274-008-9712-8

    Article  CAS  Google Scholar 

  168. Mercan N, Aslim B, Yuksekdag ZN, Beyatli Y (2002) Production of poly-beta-hydroxybutyrate (PHB) by some Rhizobium bacteria. Turkish J. Biol. 26:215–219

    CAS  Google Scholar 

  169. Anderson AJ, Williams DR, Dawes EA, Ewing DF (1995) Biosynthesis of poly(3-hydroxybutyvate-co-3-hydroxyvalerate) in Rhodococcus ruber. Can J Microbiol 41:4–13. https://doi.org/10.1139/m95-162

    Article  CAS  Google Scholar 

  170. Carlozzi P, Giovannelli A, Traversi ML, Touloupakis E, Di Lorenzo T (2019) Poly-3-hydroxybutyrate and H2 production by Rhodopseudomonas sp. S16-VOGS3 grown in a new generation photobioreactor under single or combined nutrient deficiency. Int J Biol Macromol 135:821–828. https://doi.org/10.1016/j.ijbiomac.2019.05.220

  171. Gangurde NS, Sayyed RZ, Kiran S, Gulati A (2013) Development of eco-friendly bioplastic like PHB by distillery effluent microorganisms. Environ Sci Pollut Res 20:488–497. https://doi.org/10.1007/s11356-012-1021-y

    Article  CAS  Google Scholar 

  172. Ratnaningrum D, Saraswaty V, Priatni S, Lisdiyanti P, Purnomo A, Pudjiraharti S (2019) Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains. IOP Conf. Ser. Earth Environ. Sci. 277:0–9. https://doi.org/10.1088/1755-1315/277/1/012003

    Article  Google Scholar 

  173. Tajima K, Han X, Hashimoto Y, Satoh Y, Satoh T, Taguchi S (2016) In vitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria. J Biosci Bioeng 122:660–665. https://doi.org/10.1016/j.jbiosc.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  174. Bernard M (2014)Industrial Potential of Polyhydroxyalkanoate bioplastic: a brief review. USURJ Univ. Saskatchewan Undergrad. Res. J. https://doi.org/10.32396/usurj.v1i1.55

  175. Zhang B, Carlson R, Srienc F (2006) Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 72:536–543. https://doi.org/10.1128/AEM.72.1.536-543.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Terentiev Y, Breuer U, Babel W, Kunze G (2004) Non-conventional yeasts as producers of polyhydroxyalkanoates—genetic engineering of Arxula adeninivorans. Appl Microbiol Biotechnol 64:376–381. https://doi.org/10.1007/s00253-003-1498-x

    Article  CAS  PubMed  Google Scholar 

  177. Ojha N, Das N (2018) A Statistical approach to optimize the production of Polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using response surface methodology. Int J Biol Macromol 107:2157–2170. https://doi.org/10.1016/j.ijbiomac.2017.10.089

    Article  CAS  PubMed  Google Scholar 

  178. Poirier Y, Erard N, Petétot JMC (2002) Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. FEMS Microbiol Lett 207:97–102. https://doi.org/10.1016/S0378-1097(01)00567-5

    Article  CAS  PubMed  Google Scholar 

  179. Haddouche R, Poirier Y, Delessert S, Sabirova J, Pagot Y, Neuvéglise C, Nicaud J-M (2011) Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Appl Microbiol Biotechnol 91:1327–1340. https://doi.org/10.1007/s00253-011-3331-2

    Article  CAS  PubMed  Google Scholar 

  180. Costa SS, Miranda AL, Andrade BB, de Assis DJ, Souza CO, de Morais MG, Costa JAV, Druzian JI (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116: 552–562. https://doi.org/10.1016/j.ijbiomac.2018.05.064

  181. Kavitha G, Kurinjimalar C, Sivakumar K, Kaarthik M, Aravind R, Palani P, Rengasamy R (2016) Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii using response surface methodology. Int J Biol Macromol 93:534–542. https://doi.org/10.1016/j.ijbiomac.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  182. Costa SS, Miranda AL, de Morais MG, Costa JAV, Druzian JI (2019) Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. Int J Biol Macromol 131:536–547. https://doi.org/10.1016/j.ijbiomac.2019.03.099

    Article  CAS  PubMed  Google Scholar 

  183. Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47:283–287. https://doi.org/10.1016/j.ijbiomac.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  184. Toh PSY, Jau M-H, Yew S-P, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. Uniwg J Biosci. 19:21–38

  185. Kovalcik A, Meixner K, Mihalic M, Zeilinger W, Fritz I, Fuchs W, Kucharczyk P, Stelzer F, Drosg B (2017) Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. Int J Biol Macromol 102:497–504. https://doi.org/10.1016/j.ijbiomac.2017.04.054

    Article  CAS  PubMed  Google Scholar 

  186. Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85. https://doi.org/10.1016/j.algal.2014.12.003

    Article  Google Scholar 

  187. Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863. https://doi.org/10.1016/j.biortech.2007.09.049

    Article  CAS  PubMed  Google Scholar 

  188. Jiang Y, Song X, Gong L, Li P, Dai C, Shao W (2008) High poly(β-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enzyme Microb Technol 42:167–172. https://doi.org/10.1016/j.enzmictec.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  189. Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99:6844–6851. https://doi.org/10.1016/j.biortech.2008.01.051

    Article  CAS  PubMed  Google Scholar 

  190. Hori K, Marsudi S, Unno H (2002) Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng 78:699–707. https://doi.org/10.1002/bit.10248

    Article  CAS  PubMed  Google Scholar 

  191. Wang Y, Wu Z, Zhang X, Chen G, Wu Q, Huang C, Yang Q (2005) Synthesis of medium-chain-length-polyhydroxyalkanoates in tobacco via chloroplast genetic engineering. Chinese Sci. Bull. 50:1113–1120. https://doi.org/10.1360/982005-130

    Article  CAS  Google Scholar 

  192. Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J Biotechnol 127:475–487. https://doi.org/10.1016/j.jbiotec.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  193. Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol 49:431–437. https://doi.org/10.1007/s002530051194

    Article  CAS  Google Scholar 

  194. Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann. Microbiol. 61:623–629. https://doi.org/10.1007/s13213-010-0181-6

    Article  CAS  Google Scholar 

  195. Omar S, Rayes A, Eqaab A, Voß I, Steinbüchel A (2001) Optimization of cell growth and poly(3-hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnol Lett 23:1119–1123. https://doi.org/10.1023/A:1010559800535

    Article  CAS  Google Scholar 

  196. Rebocho AT, Pereira JR, Freitas F, Neves LA, Alves VD, Sevrin C, Grandfils C, Reis MAM (2019) Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl Food Biotechnol 6:71–82. https://doi.org/10.22037/afb.v6i1.21793

  197. Furrer P, Panke S, Zinn M (2007) Efficient recovery of low endotoxin medium-chain-length poly([R]-3-hydroxyalkanoate) from bacterial biomass. J Microbiol Methods 69:206–213. https://doi.org/10.1016/j.mimet.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  198. Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15–27. https://doi.org/10.1016/j.bej.2007.11.029

    Article  CAS  Google Scholar 

  199. Ibrahim MHA, Steinbüchel A (2010) Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. J Appl Microbiol 108:214–225. https://doi.org/10.1111/j.1365-2672.2009.04413.x

    Article  CAS  PubMed  Google Scholar 

  200. Koller H, Niebelschütz G (2013) Braunegg, Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 13:549–562. https://doi.org/10.1002/elsc.201300021

    Article  CAS  Google Scholar 

  201. Haddadi MH, Asadolahi R, Negahdari B (2019) The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review. Int J Environ Sci Technol 16:3935–3948. https://doi.org/10.1007/s13762-019-02352-0

    Article  CAS  Google Scholar 

  202. Hejazi P, Vasheghani-Farahani E, Yamini Y (2003) Supercritical fluid disruption of Ralstonia eutropha for poly(β-hydroxybutyrate) recovery. Biotechnol Prog 19:1519–1523. https://doi.org/10.1021/bp034010q

    Article  CAS  PubMed  Google Scholar 

  203. Divyashree MS, Shamala TR, Rastogi NK (2009) Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioprocess Eng 14:482–489. https://doi.org/10.1007/s12257-008-0119-z

    Article  CAS  Google Scholar 

  204. Mohamad L, Dina F, Hasan HA, Sudesh K, Baidurah S (2020) Effect of feeding strategy on the protein and fatty acid contents of black soldier fly prepupae (Hermetia illucens) for the potential applications as animal feed and promising alternative protein-rich food, IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/716/1/012006

  205. Balaji S, Gopi K, Muthuvelan B (2013) A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2:278–285. https://doi.org/10.1016/j.algal.2013.03.002

    Article  Google Scholar 

  206. Pérez-Arauz AO, Aguilar-Rabiela AE, Vargas-Torres A, Rodríguez-Hernández AI, Chavarría-Hernández N, Vergara-Porras B, López-Cuellar MR (2019) Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packag. Shelf Life. 20:100297. https://doi.org/10.1016/j.fpsl.2019.01.001

    Article  Google Scholar 

  207. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

    Article  CAS  PubMed  Google Scholar 

  208. Pratt S, Vandi L-J, Gapes D, Werker A, Oehmen A, Laycock B (2019) Polyhydroxyalkanoate (PHA) bioplastics from organic waste Biorefinery. https://doi.org/10.1007/978-3-030-10961-5_26

Download references

Author information

Authors and Affiliations

Authors

Contributions

FM and HN designed and organized the data for the manuscript. IR, MHS and FA contributed in bioinformatics analysis of genes involved in PHA production. MZ provided important data and contributed in Figure designing. FM wrote the manuscript. HN proof read the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Habibullah Nadeem.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest in this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneer, F., Rasul, I., Azeem, F. et al. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J Polym Environ 28, 2301–2323 (2020). https://doi.org/10.1007/s10924-020-01772-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01772-1

Keywords

Navigation