Skip to main content

Advertisement

Log in

The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GD:

Glucose deprivation

GR:

Glucose reperfusion

LC3:

Microtubule associated protein light chain 3

LC3-II:

Lipidated form of the microtubule associated protein light chain 3

BHB:

β-Hydoxybutyrate

D-BHB:

D isomer of β-hydoxybutyrate

3-MA:

3-Methyl adenine

KB:

Ketone bodies

References

  1. Robinson AM, Williamsom DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60:143–187

    CAS  PubMed  Google Scholar 

  2. Hawkins RA, Williamson DH, Krebs HA (1971) Ketone body utilization by adult and suckling rat brain in vivo. Biochem J 122:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221

    Article  CAS  PubMed  Google Scholar 

  4. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pan JW, de Graaf R, Petersen KF, Shulman G, Herrington HP, Rothman DL (2002) [2,4-13C2]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2001) Ketogenic diet, amino acid metabolism and seizure control. J Neurosci Res 66:931–940

    Article  CAS  PubMed  Google Scholar 

  7. Masuda R, Monahan JW, Kashiwaya Y (2005) D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 80:501–509

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki M, Suzuki M, Kitamura Y, Mori S, Sato K, Dohi S et al (2002) β-Hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 89:36–43

    Article  CAS  PubMed  Google Scholar 

  9. Puchowicz MA, Zechel JL, Valerio J, Emancipator DS, Xu K, Pundik S et al (2008) Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab 28:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tai KK, Nguyen N, Pham L, Truong DD (2008) Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration. J Neural Transm 115:1011–1017

    Article  CAS  PubMed  Google Scholar 

  11. Massieu L, Haces ML, Montiel T, Hernández-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378

    Article  CAS  PubMed  Google Scholar 

  12. Noh HS, Hah YS, Nilufar R, Han J, Bong JH, Kang SS et al (2006) Acetoacetate protects neuronal cells from oxidative glutamate toxicity. J Neurosci Res 83:702–709

    Article  CAS  PubMed  Google Scholar 

  13. Yamada KA, Rensing N, Thio LL (2005) Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 385:210–214

    Article  CAS  PubMed  Google Scholar 

  14. Haces ML, Hernández-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211:85–96

    Article  CAS  PubMed  Google Scholar 

  15. Julio-Amilpas A, Montiel T, Soto-Tinoco E, Gerónimo-Olvera C, Massieu L (2015) Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. J Cereb Blood Flow Metab 35:851–860

    Article  CAS  PubMed  Google Scholar 

  16. Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145:256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Cao Q, Li S, Lu X, Zhao Y, Guan JS et al (2013) 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 34:7552–7562

    Article  CAS  PubMed  Google Scholar 

  18. Mizushima N, Levine B, Cuervo AM, Klionsky D (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanida I (2011) Autophagy basics. Microbiol Immunol 55:1–11

    Article  CAS  PubMed  Google Scholar 

  20. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alirezaei M, Kembal CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–710

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programed cell death. Cell Death Diff 12:1528–1534

    Article  CAS  Google Scholar 

  24. Clarke PGH, Puyal J (2012) Autophagic cell death exists. Autophagy 8:867–869

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sou Y-S, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kulbe JR, Levy JMM, Coultrap SJ, Thorburn A, Baye KU (2014) Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 1542:12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  29. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329–339

    Article  CAS  PubMed  Google Scholar 

  30. Bukcley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, Barrett JR, Kirks R et al (2014) Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Trans Stroke Med 6:8

    Article  Google Scholar 

  31. Shi R, Weng J, Zhao L, Li X-M, Gao T-M, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosc Ther 18:25–260

    Google Scholar 

  32. Higgins GC, Devenish RJ, Beart PM, Nagley P (2011) Autophagic activity in cortical neurons under acute oxidative stress directly contributes to cell death. Cell Mol Life Sci 68:3725–3740

    Article  CAS  PubMed  Google Scholar 

  33. Jang BG, Choi BY, Kim JH, Kim MJ, Sohn M, Suh SW (2013) Impairment of autophagic flux promotes glucose reperfusion-induced neuro2A cell death after glucose deprivation. PLoS ONE 8:e76466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yue Z, Zhong Y (2010) From global view to focused examination: understanding cellular function of lipid kinase VPS34-Beclin 1 complex in autophagy. J Mol Cell Biol 2:305–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  36. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  37. Chan LL, Shen D, Wilkinson AR, Patton W, Lai N, Chan E, et al (2012) A novel image-based cytometry method for autophagy detection in living cells. Autophagy 8:1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  CAS  PubMed  Google Scholar 

  39. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu C, Gao Y, Barrett J, Hu B (2010) Autophagy and protein aggregation after brain ischemia. J Neurochem 115:68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balmer D, Emery M, Andreux P, Auwerx J, Ginet V, Puyal J et al (2013) Autophagy defect is associated with low glucose-induced apoptosis in 66 W photoreceptor cells. PLoS ONE 8:e74162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Izumi Y, Benz AM, Katsuki H, Zorumski CF (1997) Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. J Neurosci 17:9448–9457

    CAS  PubMed  Google Scholar 

  43. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was performed in partial fulfillment of the requirements for the Ph.D. degree in Ciencias Biomédicas of L. Camberos-Luna at the Universidad Nacional Autónoma de México. This work was supported by Programa de Apoyo a Proyectos de Investigación e Inovación Tecnológica (PAPIIT) grant IN204213 and Consejo Nacional de Ciencia y Tecnología (CONACYT) Grant CB-239607 to LM and CONACYT scholarship to L. Camberos-Luna. Authors thank Augusto César Poot-Hernández for his help in vesicle counting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Massieu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Special Issue: In Honor of Philip Beart.

Lucy Camberos-Luna and Cristian Gerónimo-Olvera have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camberos-Luna, L., Gerónimo-Olvera, C., Montiel, T. et al. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons. Neurochem Res 41, 600–609 (2016). https://doi.org/10.1007/s11064-015-1700-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1700-4

Keywords

Navigation