Skip to main content
Log in

Thermal behavior and phase transformations of nanosized carbonate apatite (Syria)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase transformations of Syrian phosphorite upon mechanochemical activation are examined in the present work. The latter is carried out in planetary mill equipped with 20 mm steel milling bodies and duration from 30 to 300 min. The established by means of DTA, DTG, TG analyses transformation of non-activated carbonate fluorine apatite type B into the carbonate hydroxyl fluorine apatite (COHFAp) mixed type A2-B leads to substantial changes in the properties of the activated samples expressed in lowering the degree of crystallinity, strong defectiveness of the structure, and increase of the citric solubility. The thermal analysis gives evidence for the decomposition of the carbonate-containing component within the phosphorite, as from the positions placed in the vicinity of the hexagonal 63 axis (type A2), as well as from the positions of the phosphate ion (type B), and from the free carbonates. The data from the thermal analysis, the powder X-ray analysis and the infrared spectroscopy give also evidence for phase transformations of the activated apatite (with admixtures of quartz and calcite) into Ca10FOH(PO4)6, β-Ca3(PO4)2, Ca4P2O9, Ca3(PO4)2 · Ca2SiO4 and for that one of the quartz—into larnite and wollastonite. The influence of the α-quartz as a concomitant mineral is considered to be positive. The α-quartz forms Si–O–Si–OH bonds retaining humidity in the solid phase thus facilitating the isomorphous substitution OH → F with the subsequent formation of partially substituted COHFAp. Calcium silicophosphate and Ca4P2O9 are obtained upon its further heating. The presented here results settle a perspective route for processing of low-grade phosphate raw materials by means of tribothermal treatment aiming at preparation of condensed phosphates suitable for application as slowly acting fertilizer components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chaikina MV. Mechanochemistry of natural and synthetic apatites. In: Avvakumov EG, editor. Novosibirsk: Publishing house of SB RAS, Branch “GEO”; 2002. p. 11–15; 105–107; 114–115; 139.

  2. Pelovski Y, Petkova V, Dombalov I. Thermotribochemical treatment of low grade natural phosphates. J Therm Anal Calorim. 2007;88:207–12.

    Article  CAS  Google Scholar 

  3. Wieczorek-Ciurowa Kr, Gamrat K. Mechanochemical syntheses as an example of green processes. J Therm Anal Calorim. 2007;88:213–7.

    Article  CAS  Google Scholar 

  4. Tonsuaadu K, Rimm K, Veiderma M. Composition and properties of thermophosphates from apatite and aluminosilicates. Phosphorus Sulphur Silicon. 1993;84:73–81.

    Article  CAS  Google Scholar 

  5. Tonsuaadu K, Peld M, Leskela T, Mannonen R, Niinisto L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256:55–65.

    Article  CAS  Google Scholar 

  6. Veiderma M, Knubovets R, Tonsuaadu K. Fluorhydroxyapatites of Northern Europe and their thermal transformations. Phosphorus Sulphur Silicon. 1996;109–110:43–6.

    Google Scholar 

  7. Kaljuvee T, Kuusik R, Veiderma M. Physico-chemical transformations during thermal treatment of phosphorites and solubility of the products. Phosphorus Res Bull. 1999;10:335–40.

    CAS  Google Scholar 

  8. Chatzistavrou X, Zorba T, Chrissafis K, Kaimakamis G, Kontonasaki E, Koidis P, et al. Influence of particle size on the crystallization process and the bioactive behavior of a bioactive glass system. J Therm Anal Calorim. 2006;85:253–9.

    Article  CAS  Google Scholar 

  9. da Silva Filho EC, da Silva OG, da Fonseca MG, Arakaki LNH, Airoldi C. Synthesis and thermal characterization of copper and calcium mixed phosphates. J Therm Anal Calorim. 2007;87:775–8.

    Article  Google Scholar 

  10. Lafon JP, Champion E, Bernache-Assollant D, Gibert R, Danna AM. Thermal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;73:1127–34.

    Article  Google Scholar 

  11. Bianco Al, Cacciotti I, Lombardi M, Montanaro L, Gusmano G. Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim. 2007;88:237–43.

    Article  CAS  Google Scholar 

  12. Yaneva V, Petrov O, Petkova V. Structural and spectroscopic studies of the nanosize appatite (Syrian). Mater Res Bull. 2009;44:693–9.

    Article  CAS  Google Scholar 

  13. Nikcevic I, Jokanovic V, Mitric M, Nedic Z, Makovec D, Uskokovic D. Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J Solid State Chem. 2004;177:2565–74.

    Article  CAS  Google Scholar 

  14. McCubbin FM, Mason HE, Park H, Phillips BL, Parise JB, Nekvasilil H, et al. Synthesis and characterization of low-OH– fluor-chlorapatite: a single-crystal XRD and NMR spectroscopic study. Am Mineral. 2008;93:210–6.

    Article  CAS  Google Scholar 

  15. Chrisis Tacker R. Carbonate in igneous and metamorphic fluorapatite: two type A and two type B substitutions. Am Mineral. 2008;93:168–76.

    Article  Google Scholar 

  16. Lafon JP, Championa E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x (PO4)6−x (CO3) x (OH)2−x−2y (CO3)y ceramics with controlled composition . J Eur Ceram Soc. 2008;28:139–47.

    Article  CAS  Google Scholar 

  17. Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J. Structure analysis of A-type carbonate apatite by a single-crystal X-ray diffraction method. J Solid State Chem. 2000;155:292–7.

    Article  CAS  Google Scholar 

  18. Fleet ME, Liu X. Carbonate apatite type A synthesized at high pressure: new space group (P3) and orientation of channel carbonate ion. J Solid State Chem. 2003;174:412–7.

    Article  CAS  Google Scholar 

  19. LeGeros RZ, Trautz OR, Klein E, LeGeros JP. Two types of carbonate substitution in the apatite structure Experimentia. 1969;25:5–7.

    Article  CAS  Google Scholar 

  20. Elliott JC. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates Rev Miner Geochem, vol. 48. Miner Soc Am, Washington, DC; 2002. p. 427.

  21. Tõnsuaadu K, Peld M, Bender V. Thermal analysis of apatite structure. J Therm Anal Calorim. 2003;72:363–71.

    Article  Google Scholar 

  22. Jillavenkatesa A, Condrate RA Sr. The infrared and Raman spectra of β-and α-tricalcium phosphate (Ca3(PO4)2). Spectrosc Lett. 1998;31:1619–34.

    Article  CAS  Google Scholar 

  23. Jillavenkatesa A, Condrate RA Sr. The infrared and Raman spectra of tetracalcium phosphate (Ca4P2O9). Spectrosc Lett. 1997;30:1561–70.

    Article  CAS  Google Scholar 

  24. Plusnina I. Infrared spectroscopy of the minerals. Moscow; 1977 (in Russian).

  25. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986.

    Google Scholar 

  26. Shi J, Klocke A, Zhang M, Bismayer U. Thermally-induced structural modification of dental enamel apatite: decomposition and transformation of carbonate groups. Eur J Miner. 2005;17:769–75.

    Article  CAS  Google Scholar 

  27. Uhnevish G. Infrared spectroscopy of the water (edited by prof. L.A. Gribov). Nauka, Moscow; 1973 (in Russian).

  28. Stoch L, Środa M. Infrared spectroscopy in the investigation of oxide glasses structure. J Mol Struct. 1999;511/512:77–84.

    Article  Google Scholar 

  29. Ciecinska M. Thermal analysis of gel-derived bioactive phospho-silicate glasses. J Therm Anal Calorim. 2003;72:199–207.

    Article  CAS  Google Scholar 

  30. Ryall W, Threagold I. Evidence for [(SiO3)5]{∞} type chains in inesite as shown by X-ray and infrared absorption studies. Am Mineral. 1966;51:754–61.

    CAS  Google Scholar 

  31. Wilson RM, Elliott JC, Dowker SEP. Formate incorporation in the structure of Ca-deficient apatite: rietveld structure refinement. J Solid State Chem. 2003;174:132–40.

    Article  CAS  Google Scholar 

  32. Meejoo S, Maneeprakorn W, Winotai P. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta. 2006;447:115–20.

    Article  CAS  Google Scholar 

  33. Barralet J, Knowles J, Best S, Bonfield W. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci: Mat Med. 2002;13:529–33.

    Article  CAS  Google Scholar 

  34. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160:340–9.

    Article  CAS  Google Scholar 

  35. He QJ, Huang ZL, Cheng XK, Yu J. Thermal stability of porous A-type carbonated hydroxyapatite spheres. Mater Lett. 2008;62:539–42.

    Article  CAS  Google Scholar 

  36. Shi Donglu, editor. Biomaterials and tissue engineering. Berlin, New York: Springer/Tsinghua University Press; 2004.

    Google Scholar 

  37. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

    Google Scholar 

  38. Trojan M, Šulcová P, Sýkorová L. Thermal analysis of Ba(II)–Sr(II) cyclo-tetraphosphates(V). J Therm Anal Calorim. 2002;68:75–9.

    Article  CAS  Google Scholar 

  39. Shi J, Klocke A, Zhang M, Bismayer U. Thermal behavior of dental enamel and geologic apatite: an infrared spectroscopic study. Am Mineral. 2003;88:1866–71.

    CAS  Google Scholar 

  40. Holcomb DW, Young RA. Thermal decomposition of human tooth enamel. Calcif Tissue Int. 1980;31:189–201.

    Article  CAS  Google Scholar 

  41. Sitarz M, Szumera M. Crystallization of silico-phosphate glasses. J Therm Anal Calorim. 2008;91:255–60.

    Article  CAS  Google Scholar 

  42. Szumera M, Wacławska Ir. Spectroscopic and thermal studies of silicate-phosphate glass. J Therm Anal Calorim. 2007;88:151–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Fund “Scientific research” of the Ministry of Education for the financial support (project DOO2-104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Petkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkova, V., Yaneva, V. Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J Therm Anal Calorim 99, 179–189 (2010). https://doi.org/10.1007/s10973-009-0149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0149-6

Keywords

Navigation