Skip to main content

Advertisement

Log in

Review on Recent Modifications in Nickel Metal-Organic Framework Derived Electrode (Ni-MOF) Materials for Supercapacitors

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In present days, supercapacitors become focal point of the most favorable electrochemical energy storage system. Among various supercapacitive materials, the nickel-based metal-organic framework (Ni-MOF) is a new category of rigid electrodes with very large specific capacitance. However, scientists working on Ni MOF materials have shown that there are some limitations that need to be overcome, such as their low conductivity and cyclic stability. Notable improvements have been received through different strategies such as build synergetic structures, improving the active sites by composites with other metal oxides and improve electrical conductivity as well as specific surface area by using carbonaceous electrode materials. We reviewed the progress of the current study to improve the electrochemical performance of the Ni-MOF electrode and specifically focused on the requirement of the desired metal synergistic and doping effects on the electrical activity of MOFs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.J. Marje et al., Chem. Eng. J. 429, 132184 (2022). https://doi.org/10.1016/j.cej.2021.132184

    Article  CAS  Google Scholar 

  2. N. Devi, S.S. Ray, Mater. Today Commun. 25, 101691 (2020). https://doi.org/10.1016/j.mtcomm.2020.101691

    Article  CAS  Google Scholar 

  3. X. Hu, L. Wei, R. Chen, Q. Wu, J. Li, ChemistrySelect 5(17), 5268–5288 (2020). https://doi.org/10.1002/slct.201904485

    Article  CAS  Google Scholar 

  4. S. Yadav, A. Devi, J. Energy Storage 30, 101486 (2020). https://doi.org/10.1016/j.est.2020.101486

    Article  Google Scholar 

  5. A.E. Baumann, D.A. Burns, B. Liu, V.S. Thoi, Commun. Chem. 2(1), 1–14 (2019). https://doi.org/10.1038/s42004-019-0184-6

    Article  Google Scholar 

  6. F. Wang et al., Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/c7cs00205j

    Article  CAS  PubMed  Google Scholar 

  7. S. Wu, J. Liu, H. Wang, H. Yan, Int. J. Energy Res. 43(2), 697–716 (2019). https://doi.org/10.1002/er.4232

    Article  CAS  Google Scholar 

  8. M. Guan, Q. Wang, X. Zhang, J. Bao, X. Gong, Y. Liu, Front. Chem. 8, 1–14 (2020). https://doi.org/10.3389/fchem.2020.00390

    Article  CAS  Google Scholar 

  9. S. Sahoo, K.K. Naik, D.J. Late, C.S. Rout, J. Alloys Compd. 695, 154–161 (2017). https://doi.org/10.1016/j.jallcom.2016.10.163

    Article  CAS  Google Scholar 

  10. L. Yang et al., J. Electroanal. Chem. 830–831, 1–6 (2018). https://doi.org/10.1016/j.jelechem.2018.10.024

    Article  CAS  Google Scholar 

  11. X. Li, A.M. Elshahawy, C. Guan, J. Wang, Small 13(39), 1–24 (2017). https://doi.org/10.1002/smll.201701530

    Article  CAS  Google Scholar 

  12. H. Li, Y. Gao, C. Wang, G. Yang, Adv. Energy Mater. 5(6), 1–9 (2015). https://doi.org/10.1002/aenm.201401767

    Article  CAS  Google Scholar 

  13. Y. Wang, R. Liu, S. Sun, X. Wu, J. Coll Interf Sci. 549, 16–21 (2019). https://doi.org/10.1016/j.jcis.2019.04.049

    Article  CAS  Google Scholar 

  14. L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, M. Liu, Mater. Adv. 1(5), 945–966 (2020). https://doi.org/10.1039/d0ma00384k

    Article  CAS  Google Scholar 

  15. R. Barik, P.P. Ingole, Curr. Opin. Electrochem. 21(May), 327–334 (2020). https://doi.org/10.1016/j.coelec.2020.03.022

    Article  CAS  Google Scholar 

  16. S.A. Delbari et al., J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158281

    Article  Google Scholar 

  17. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11(6), 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796

    Article  CAS  PubMed  Google Scholar 

  18. S. Subudhi, S.P. Tripathy, K. Parida, Inorg. Chem. Front. 8(6), 1619–1636 (2021). https://doi.org/10.1039/d0qi01117g

    Article  CAS  Google Scholar 

  19. R. Du et al., Adv. Energy Mater. 11(20), 1–47 (2021). https://doi.org/10.1002/aenm.202100154

    Article  CAS  Google Scholar 

  20. H. Li et al., ACS Appl. Mater. Interf 10(4), 3160–3163 (2018). https://doi.org/10.1021/acsami.7b17026

    Article  CAS  Google Scholar 

  21. F. Dai et al., New J. Chem. 40(8), 6867–6873 (2016). https://doi.org/10.1039/c5nj03632a

    Article  CAS  Google Scholar 

  22. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, J. Mater. Chem. C 3(207890), 10715–10722 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  23. M. Khan, J. Mater. Chem. A 207890, 121 (2015). https://doi.org/10.1039/C8TA10610J.Volume

    Article  Google Scholar 

  24. S. Payra, S. Challagulla, Y. Bobde, C. Chakraborty, B. Ghosh, S. Roy, J. Hazard. Mater. 373, 377–388 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.053

    Article  CAS  PubMed  Google Scholar 

  25. O. Ryo, K. Susumu, Solid State Chem. (2017). https://doi.org/10.1002/9783527691036.hsscvol4015

    Article  Google Scholar 

  26. M. Saraf, R. Rajak, S.M. Mobin, ChemistrySelect 4(27), 8142–8149 (2019). https://doi.org/10.1002/slct.201901652

    Article  CAS  Google Scholar 

  27. Y. Han, S. Zhang, N. Shen, D. Li, X. Li, Mater. Lett. 188, 1–4 (2017). https://doi.org/10.1016/j.matlet.2016.09.051

    Article  CAS  Google Scholar 

  28. Y. Zhang et al., Mater. Lett. 228, 9–12 (2018). https://doi.org/10.1016/j.matlet.2018.05.073

    Article  CAS  Google Scholar 

  29. Y. Chen, R. Yang, C. Chen, Y. Li, M. Wei, J. Power Sources 505, 230077 (2021). https://doi.org/10.1016/j.jpowsour.2021.230077

    Article  CAS  Google Scholar 

  30. L. Wang et al., J. Coll Interf Sci. 554, 260–268 (2019). https://doi.org/10.1016/j.jcis.2019.07.015

    Article  CAS  Google Scholar 

  31. V. Shrivastav, S. Sundriyal, K.H. Kim, R.K. Sinha, U.K. Tiwari, A. Deep, Int. J. Energy Res. 44(8), 6269–6284 (2020). https://doi.org/10.1002/er.5328

    Article  CAS  Google Scholar 

  32. M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao, L. Han, J. Alloys Compd. 734, 1–8 (2018). https://doi.org/10.1016/j.jallcom.2017.10.171

    Article  CAS  Google Scholar 

  33. Y. Jiao et al., J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/C6TA09805C

    Article  CAS  Google Scholar 

  34. Z. Sun, L. Hui, W. Ran, Y. Lu, D. Jia, New J. Chem. 40(2), 1100–1103 (2016). https://doi.org/10.1039/c5nj02261d

    Article  CAS  Google Scholar 

  35. D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn, S.H. Han, Microporous Mesoporous Mater. 153, 163–165 (2012). https://doi.org/10.1016/j.micromeso.2011.12.040

    Article  CAS  Google Scholar 

  36. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157(1), 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  37. P. Venkateswarlu et al., J. Coll. Interf. Sci. 503, 17–27 (2017). https://doi.org/10.1016/j.jcis.2017.05.007

    Article  CAS  Google Scholar 

  38. Z. Lin et al., Mater. Today 21(4), 419–436 (2018). https://doi.org/10.1016/j.mattod.2018.01.035

    Article  CAS  Google Scholar 

  39. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  40. H. Yang, IEEE Trans. Power Electron. 34(1), 646–658 (2019). https://doi.org/10.1109/TPEL.2018.2812882

    Article  PubMed  Google Scholar 

  41. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  PubMed  Google Scholar 

  42. Y. Jiang, J. Liu, Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028

    Article  Google Scholar 

  43. Y. Liu, S.P. Jiang, Z. Shao, Mater. Today Adv. 7, 100072 (2020). https://doi.org/10.1016/j.mtadv.2020.100072

    Article  Google Scholar 

  44. M. Sarno, Stud. Surf. Sci. Catal. 179, 431–458 (2019). https://doi.org/10.1016/B978-0-444-64337-7.00022-7

    Article  Google Scholar 

  45. L. Zhou, C. Li, X. Liu, Y. Zhu, Y. Wu, T. van Ree, Metal oxides in supercapacitors (Elsevier Inc, 2018)

    Google Scholar 

  46. S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Nano-Micro Lett. (2020). https://doi.org/10.1007/s40820-020-0413-7

    Article  Google Scholar 

  47. J. Liu et al., RSC Adv. 8(34), 19103–19115 (2018). https://doi.org/10.1039/c8ra00921j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S.T. Revankar, Chapter six - chemical energy storage (Elsevier Inc, 2018)

    Google Scholar 

  49. D. Majumdar, T. Maiyalagan, Z. Jiang, ChemElectroChem 6(17), 4343–4372 (2019). https://doi.org/10.1002/celc.201900668

    Article  CAS  Google Scholar 

  50. A.A. Lubimtsev, P.R.C. Kent, B.G. Sumpter, P. Ganesh, J. Mater. Chem. A 1(47), 14951–14956 (2013). https://doi.org/10.1039/c3ta13316h

    Article  CAS  Google Scholar 

  51. D. Majumdar, M. Mandal, S.K. Bhattacharya, ChemElectroChem 6(6), 1623–1648 (2019). https://doi.org/10.1002/celc.201801761

    Article  CAS  Google Scholar 

  52. J. Liu et al., Adv. Sci. (2018). https://doi.org/10.1002/advs.201700322

    Article  Google Scholar 

  53. S. Fleischmann et al., Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170

    Article  CAS  PubMed  Google Scholar 

  54. C. Costentin, J.M. Savéant, Chem. Sci. 10(22), 5656–5666 (2019). https://doi.org/10.1039/c9sc01662g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. W. Guo et al., Nano Energy 57, 459–472 (2019). https://doi.org/10.1016/j.nanoen.2018.12.015

    Article  CAS  Google Scholar 

  56. L. An et al., J. Mater. Chem. A 3(21), 11503–11510 (2015). https://doi.org/10.1039/c5ta01746g

    Article  CAS  Google Scholar 

  57. Y. Xu et al., J. Energy Chem. 24(2), 193–198 (2015). https://doi.org/10.1016/S2095-4956(15)60300-X

    Article  Google Scholar 

  58. H.-S. Kim, J.B. Cook, S.H. Tolbert, B. Dunn, J. Electrochem. Soc. 162(5), A5083–A5090 (2015). https://doi.org/10.1149/2.0141505jes

    Article  CAS  Google Scholar 

  59. W. Li, X. Zhao, Q. Bi, Q. Ma, L. Han, K. Tao, Dalt. Trans. 50(34), 11701–11710 (2021). https://doi.org/10.1039/d1dt02066h

    Article  CAS  Google Scholar 

  60. T.P. Mofokeng, A.K. Ipadeola, Z.N. Tetana, K.I. Ozoemena, ACS Omega 5(32), 20461–20472 (2020). https://doi.org/10.1021/acsomega.0c02563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D. Van Lam et al., ACS Appl. Mater. Interf 12(35), 39154–39162 (2020). https://doi.org/10.1021/acsami.0c10235

    Article  CAS  Google Scholar 

  62. D. Jiang, C. Wei, Z. Zhu, X. Xu, M. Lu, G. Wang, Crystals (2021). https://doi.org/10.3390/cryst11111425

    Article  Google Scholar 

  63. A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, Renew. Sustain. Energy Rev. 101, 123–145 (2019). https://doi.org/10.1016/j.rser.2018.10.026

    Article  CAS  Google Scholar 

  64. M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, NANO 9(6), 1–25 (2014). https://doi.org/10.1142/S1793292014300023

    Article  CAS  Google Scholar 

  65. Y. Shao et al., Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252

    Article  CAS  PubMed  Google Scholar 

  66. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3(9), 1294–1301 (2010). https://doi.org/10.1039/c0ee00074d

    Article  CAS  Google Scholar 

  67. S. Banerjee, B. De, P. Sinha, J. Cherusseri, K.K. Kar, Applications of supercapacitors (Springer, 2020)

    Book  Google Scholar 

  68. N. Mahmood, T. Tang, Y. Hou, Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201600374

    Article  Google Scholar 

  69. M. Cakici, K.R. Reddy, F. Alonso-Marroquin, Chem. Eng. J. 309, 151–158 (2017). https://doi.org/10.1016/j.cej.2016.10.012

    Article  CAS  Google Scholar 

  70. P.S. Joshi, D.S. Sutrave, Int J ChemTech Res (2018). https://doi.org/10.20902/ijctr.2018.110911

    Article  Google Scholar 

  71. Z. Qiu et al., J. Power Sources 376, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.077

    Article  CAS  Google Scholar 

  72. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, J. Phys. Chem. C 122(1), 194–206 (2018). https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

  73. Y. Gogotsi, R.M. Penner, ACS Nano 12(3), 2081–2083 (2018). https://doi.org/10.1021/acsnano.8b01914

    Article  CAS  PubMed  Google Scholar 

  74. D. Majumdar, ChemElectroChem 8(2), 291–336 (2021). https://doi.org/10.1002/celc.202001371

    Article  CAS  Google Scholar 

  75. T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Adv. Energy Mater. 9(39), 1–13 (2019). https://doi.org/10.1002/aenm.201902007

    Article  CAS  Google Scholar 

  76. A. Afif, S.M. Rahman, A. Tasfiah Azad, J. Zaini, M.A. Islam, A.K. Azad, J. Energy Storage 25, 100852 (2019). https://doi.org/10.1016/j.est.2019.100852

    Article  Google Scholar 

  77. K.B. Pisal, B.M. Babar, S.H. Mujawar, L.D. Kadam, J. Energy Storage 43, 103297 (2021). https://doi.org/10.1016/j.est.2021.103297

    Article  Google Scholar 

  78. S. Zhang, N. Pan, Adv. Energy Mater. 5(6), 1–19 (2015). https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  79. J. Zhao, A.F. Burke, Adv. Energy Mater. 11(1), 1–29 (2021). https://doi.org/10.1002/aenm.202002192

    Article  CAS  Google Scholar 

  80. J. Zhao, A.F. Burke, Energy Storage Mater. 36, 31–55 (2021). https://doi.org/10.1016/j.ensm.2020.12.013

    Article  Google Scholar 

  81. K. Fic, A. Platek, J. Piwek, E. Frackowiak, Mater. Today 21(4), 437–454 (2018). https://doi.org/10.1016/j.mattod.2018.03.005

    Article  CAS  Google Scholar 

  82. N. Baig, I. Kammakakam, W. Falath, I. Kammakakam, Mater. Adv. 2(6), 1821–1871 (2021). https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

  83. K.A.S. Usman et al., NPG Asia Mater. (2020). https://doi.org/10.1038/s41427-020-00240-5

    Article  Google Scholar 

  84. C. Zhang, Q. Zhang, K. Zhang, Z. Xiao, Y. Yang, L. Wang, RSC Adv. 8(32), 17747–17753 (2018). https://doi.org/10.1039/c8ra01002a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, J. Mater. Sci. 53(9), 6807–6818 (2018). https://doi.org/10.1007/s10853-018-2005-1

    Article  CAS  Google Scholar 

  86. M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch, M.R. Hill, Chem. Soc. Rev. 46(11), 3453–3480 (2017). https://doi.org/10.1039/c7cs00109f

    Article  CAS  PubMed  Google Scholar 

  87. Y. Wu et al., Int. J. Electrochem. Sci. 16, 1–11 (2021). https://doi.org/10.20964/2021.03.68

    Article  CAS  Google Scholar 

  88. M.A. Nasalevich et al., Energy Environ. Sci. 8(1), 364–375 (2015). https://doi.org/10.1039/C4EE02853H

    Article  CAS  Google Scholar 

  89. S. Bhushan, B. Singh, B. Bharate, R.A. Vishwakarma, RSC Adv. (2013). https://doi.org/10.1039/xxxx

    Article  Google Scholar 

  90. H. Zhang, Y. Sun, X. Zhang, H. Yang, B. Lin, Electrochim. Acta 389, 138684 (2021). https://doi.org/10.1016/j.electacta.2021.138684

    Article  CAS  Google Scholar 

  91. W. Xuan, R. Ramachandran, C. Zhao, F. Wang, J. Solid State Electrochem. 22(12), 3873–3881 (2018). https://doi.org/10.1007/s10008-018-4096-7

    Article  CAS  Google Scholar 

  92. R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang, Appl. Surf. Sci. 460, 33–39 (2018). https://doi.org/10.1016/j.apsusc.2017.11.271

    Article  CAS  Google Scholar 

  93. S. Zheng et al., Adv. Energy Mater. 7(18), 1–27 (2017). https://doi.org/10.1002/aenm.201602733

    Article  CAS  Google Scholar 

  94. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, A. Deep, ChemistrySelect 4(9), 2585–2592 (2019). https://doi.org/10.1002/slct.201900305

    Article  CAS  Google Scholar 

  95. C. Yang, X. Li, L. Yu, X. Liu, J. Yang, M. Wei, Chem. Commun. 56(12), 1803–1806 (2020). https://doi.org/10.1039/c9cc09302h

    Article  CAS  Google Scholar 

  96. C. Feng, C.P. Lv, Z.Q. Li, H. Zhao, H.H. Huang, J. Solid State Chem. 265(May), 244–247 (2018). https://doi.org/10.1016/j.jssc.2018.06.019

    Article  CAS  Google Scholar 

  97. Y. Li, Y. Xu, Y. Liu, H. Pang, Small 15(36), 1–8 (2019). https://doi.org/10.1002/smll.201902463

    Article  CAS  Google Scholar 

  98. Y. Xiao, W. Wei, M. Zhang, S. Jiao, Y. Shi, S. Ding, ACS Appl Energy Mater. 2(3), 2169–2177 (2019). https://doi.org/10.1021/acsaem.8b02201

    Article  CAS  Google Scholar 

  99. S. Gao et al., Nano (2019). https://doi.org/10.1142/S1793292019500322

    Article  Google Scholar 

  100. J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, J. Mater. Chem. A 2(39), 16640–16644 (2014). https://doi.org/10.1039/c4ta04140b

    Article  CAS  Google Scholar 

  101. Q. Tang, L. Ma, F. Cao, M. Gan, F. Yan, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01240-0

    Article  Google Scholar 

  102. G. Zhu et al., Chem. Commun. 54(74), 10499–10502 (2018). https://doi.org/10.1039/c8cc03669a

    Article  CAS  Google Scholar 

  103. J. Wang, Q. Zhong, Y. Xiong, D. Cheng, Y. Zeng, Y. Bu, Appl. Surf. Sci. 483, 1158–1165 (2019). https://doi.org/10.1016/j.apsusc.2019.03.340

    Article  CAS  Google Scholar 

  104. Z. Xiao et al., ACS Nano 13(6), 7024–7030 (2019). https://doi.org/10.1021/acsnano.9b02106

    Article  CAS  PubMed  Google Scholar 

  105. Y. Chen, N. Wang, W. Hu, S. Komarneni, J. Porous Mater. 26(3), 921–929 (2019). https://doi.org/10.1007/s10934-019-00735-9

    Article  CAS  Google Scholar 

  106. J. Sun, X. Yu, S. Zhao, H. Chen, K. Tao, L. Han, Inorg. Chem. 59(16), 11385–11395 (2020). https://doi.org/10.1021/acs.inorgchem.0c01157

    Article  CAS  PubMed  Google Scholar 

  107. J. Wang, Q. Zhong, Y. Zeng, D. Cheng, Y. Xiong, Y. Bu, J. Coll. Interf. Sci. 555, 42–52 (2019). https://doi.org/10.1016/j.jcis.2019.07.063

    Article  CAS  Google Scholar 

  108. Y. Liang, W. Yao, J. Duan, M. Chu, S. Sun, X. Li, J. Energy Storage 33, 2020 (2021). https://doi.org/10.1016/j.est.2020.102149

    Article  Google Scholar 

  109. S. Huang, X.R. Shi, C. Sun, Z. Duan, P. Ma, S. Xu, Nanomaterials 10(11), 1–25 (2020). https://doi.org/10.3390/nano10112268

    Article  CAS  Google Scholar 

  110. H. Ya Chen, Y. Qiu Huo, K. Zhe Cai, Y. Teng, Synth Met. 276, 11676 (2021). https://doi.org/10.1016/j.synthmet.2021.116761

    Article  CAS  Google Scholar 

  111. F. Ren, Y. Ji, F. Chen, Y. Qian, J. Tian, J. Wang, Mater. Chem. Front. 5(19), 7333–7342 (2021). https://doi.org/10.1039/d1qm00940k

    Article  CAS  Google Scholar 

  112. F. Cao et al., Synth. Met. 234, 154–160 (2017). https://doi.org/10.1016/j.synthmet.2017.11.001

    Article  CAS  Google Scholar 

  113. L. Guo-Chang et al., Dalton Trans 45(34), 13311–13316 (2016). https://doi.org/10.1039/c6dt01791f

    Article  Google Scholar 

  114. A. Mustafa, H. Foratirad, Synth Met 285, 117009 (2022). https://doi.org/10.1016/j.synthmet.2022.117009

    Article  CAS  Google Scholar 

  115. A. Tang, C. Wan, X. Hu, X. Ju, Nano Res. 14(11), 4063–4072 (2021). https://doi.org/10.1007/s12274-021-3341-z

    Article  CAS  Google Scholar 

  116. X. Zhang et al., J. Mater. Sci. Mater. Electron. 30(19), 18101–18110 (2019). https://doi.org/10.1007/s10854-019-02163-6

    Article  CAS  Google Scholar 

  117. Y. Wang et al., Polymers (Basel) (2019). https://doi.org/10.3390/polym11050821

    Article  PubMed  PubMed Central  Google Scholar 

  118. T. Deng, X. Shi, W. Zhang, Z. Wang, W. Zheng, iScience 23(6), 101220 (2020). https://doi.org/10.1016/j.isci.2020.101220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. G. Guo, J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06177-x

    Article  Google Scholar 

  120. L. Nio, Enhanced conductivity and gating effect of p-type. Nanoscale 6, 688–692 (2014). https://doi.org/10.1039/c3nr04953a

    Article  CAS  Google Scholar 

  121. X. Zheng et al., Mater. Res. Bull. 106, 243–249 (2018). https://doi.org/10.1016/j.materresbull.2018.06.005

    Article  CAS  Google Scholar 

  122. Y. Yang et al., Inorg. Chem. (2020). https://doi.org/10.1021/acs.inorgchem.9b03263

    Article  PubMed  PubMed Central  Google Scholar 

  123. S. Kishore Babu, M. Jayachandran, T. Maiyalagan, T. Vijayakumar, B. Gunasekaran, Mater Lett. 302, 130338 (2021). https://doi.org/10.1016/j.matlet.2021.130338

    Article  CAS  Google Scholar 

  124. P.D. Patil et al., J. Energy Storage 40, 102821 (2021). https://doi.org/10.1016/j.est.2021.102821

    Article  Google Scholar 

  125. S. Li et al., Dalt. Trans. 49(29), 10203–10211 (2020). https://doi.org/10.1039/d0dt00251h

    Article  CAS  Google Scholar 

  126. Y. Wang et al., Mater. Today Commun. 26, 102057 (2021). https://doi.org/10.1016/j.mtcomm.2021.102057

    Article  CAS  Google Scholar 

  127. Z. Dengchao et al., Chem—A Euro J 26(71), 17149–17155 (2020). https://doi.org/10.1002/chem.202003220

    Article  CAS  Google Scholar 

  128. G. Nagaraju, S.C. Sekhar, B. Ramulu, S.K. Hussain, D. Narsimulu, J.S. Yu, Nano-Micro Lett. 13(1), 1–18 (2021). https://doi.org/10.1007/s40820-020-00528-9

    Article  CAS  Google Scholar 

  129. H. Gholipour-Ranjbar, M. Soleimani, H.R. Naderi, New J. Chem. 40(11), 9187–9193 (2016). https://doi.org/10.1039/c6nj01449f

    Article  CAS  Google Scholar 

  130. C. Ye et al., J. Mater. Chem. A 7(9), 4998–5008 (2019). https://doi.org/10.1039/c8ta11948a

    Article  CAS  Google Scholar 

  131. Y. Li, Y. Shan, H. Pang, Chinese Chem. Lett. 31(9), 2280–2286 (2020). https://doi.org/10.1016/j.cclet.2020.03.027

    Article  CAS  Google Scholar 

  132. S. Gao et al., J. Coll. Interf. Sci. 531, 83–90 (2018). https://doi.org/10.1016/j.jcis.2018.07.044

    Article  CAS  Google Scholar 

  133. T. Sun et al., J. Mater. Chem. A 7(43), 25120–25131 (2019). https://doi.org/10.1039/c9ta08696j

    Article  CAS  Google Scholar 

  134. M.G. Radhika et al., Mater Res Exp 7(5), 054003 (2020)

    Article  CAS  Google Scholar 

  135. Y. Wang et al., ACS Appl. Energy Mater. 2(3), 2063–2071 (2019). https://doi.org/10.1021/acsaem.8b02128

    Article  CAS  Google Scholar 

  136. T. Deng et al., Adv. Energy Mater. 8(7), 1–7 (2018). https://doi.org/10.1002/aenm.201702294

    Article  CAS  Google Scholar 

  137. H.M. Ma et al., Inorg. Chem. 58(15), 9543–9547 (2019). https://doi.org/10.1021/acs.inorgchem.9b00937

    Article  CAS  PubMed  Google Scholar 

  138. H. He et al., J. Solid State Chem. 288, 121375 (2020). https://doi.org/10.1016/j.jssc.2020.121375

    Article  CAS  Google Scholar 

  139. Y. Chen, D. Ni, X. Yang, C. Liu, J. Yin, K. Cai, Electrochim. Acta 278, 114–123 (2018). https://doi.org/10.1016/j.electacta.2018.05.024

    Article  CAS  Google Scholar 

  140. J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, J. Mater. Chem. A 2(44), 19005–19010 (2014). https://doi.org/10.1039/c4ta04346d

    Article  CAS  Google Scholar 

  141. Q. Li et al., Int. J. Hydrogen Energy 45(41), 20820–20831 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.143

    Article  CAS  Google Scholar 

  142. S.K. Surendra et al., Ceram Int 47(22), 31650–31665 (2021). https://doi.org/10.1016/j.ceramint.2021.08.045

    Article  CAS  Google Scholar 

  143. X.W. Liu, T.J. Sun, J.L. Hu, S.D. Wang, J. Mater. Chem. A 4(10), 3584–3616 (2016). https://doi.org/10.1039/c5ta09924b

    Article  CAS  Google Scholar 

  144. C. Xiong et al., Compos. Part B Eng. 116, 7–15 (2017). https://doi.org/10.1016/j.compositesb.2017.02.028

    Article  CAS  Google Scholar 

  145. Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, ACS Appl Mater. Interf. 8(42), 28904–28916 (2016). https://doi.org/10.1021/acsami.6b10640

    Article  CAS  Google Scholar 

  146. P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Electrochim. Acta 157, 69–77 (2015). https://doi.org/10.1016/j.electacta.2015.01.082

    Article  CAS  Google Scholar 

  147. Y. Zhong et al., J. Coll. Interf. Sci. 561, 265–274 (2020). https://doi.org/10.1016/j.jcis.2019.10.023

    Article  CAS  Google Scholar 

  148. P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, J. Mater. Chem. A 3(26), 13874–13883 (2015). https://doi.org/10.1039/c5ta02461g

    Article  CAS  Google Scholar 

  149. S. Shin, M.W. Shin, Appl. Surf. Sci. 540, 148295 (2021). https://doi.org/10.1016/j.apsusc.2020.148295

    Article  CAS  Google Scholar 

  150. F. He et al., J. Mater. Res. 35(11), 1439–1450 (2020). https://doi.org/10.1557/jmr.2020.93

    Article  CAS  Google Scholar 

  151. X. Wang et al., J. Solid State Chem. 277, 575–586 (2019). https://doi.org/10.1016/j.jssc.2019.07.019

    Article  CAS  Google Scholar 

  152. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, Electrochim. Acta 275, 76–86 (2018). https://doi.org/10.1016/j.electacta.2018.04.130

    Article  CAS  Google Scholar 

  153. S. Kumaraguru, J. Yesuraj, S. Mohan, Compos. Part B Eng. 185, 107767 (2020). https://doi.org/10.1016/j.compositesb.2020.107767

    Article  CAS  Google Scholar 

  154. P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, M. Majumder, ACS Appl Mater. Interf. 7(6), 3655–3664 (2015). https://doi.org/10.1021/am508119c

    Article  CAS  Google Scholar 

  155. L.G. Beka, X. Bu, X. Li, X. Wang, C. Han, W. Liu, RSC Adv. 9(62), 36123–36135 (2019). https://doi.org/10.1039/c9ra07061c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. C. Cheng, J. Xu, W. Gao, S. Jiang, R. Guo, Electrochim. Acta 318, 23–31 (2019). https://doi.org/10.1016/j.electacta.2019.06.055

    Article  CAS  Google Scholar 

  157. S. Li, C. Shi, Y. Pan, Y. Wang, Diam. Relat. Mater. 115, 108358 (2021). https://doi.org/10.1016/j.diamond.2021.108358

    Article  CAS  Google Scholar 

  158. J. Yang, P. Li, L. Wang, X. Guo, J. Guo, S. Liu, J. Electroanal. Chem. 848, 113301 (2019). https://doi.org/10.1016/j.jelechem.2019.113301

    Article  CAS  Google Scholar 

  159. Z. Lv, Q. Zhong, Y. Bu, Appl. Surf. Sci. 439, 413–419 (2018). https://doi.org/10.1016/j.apsusc.2017.12.185

    Article  CAS  Google Scholar 

  160. S. Kulandaivalu, M.Z. Hussein, A. Mohamad Jaafar, M.A.A. Mohd Abdah, N.H.N. Azman, Y. Sulaiman, RSC Adv. 9(69), 40478–40486 (2019). https://doi.org/10.1039/c9ra08134h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. K. Qi, R. Hou, S. Zaman, Y. Qiu, B.Y. Xia, H. Duan, ACS Appl Mater. Interf. 10(21), 18021–18028 (2018). https://doi.org/10.1021/acsami.8b05802

    Article  CAS  Google Scholar 

  162. Y. Jiao, G. Chen, D. Chen, J. Pei, Y. Hu, J. Mater. Chem. A 5(45), 23744–23752 (2017). https://doi.org/10.1039/c7ta07464f

    Article  CAS  Google Scholar 

  163. Z. Ansari-Asl, A.S. Dezfuli, J Inorg Organomet Poly Mater 6(29), 1838–1847 (2021). https://doi.org/10.1007/s10904-019-01145-9

    Article  CAS  Google Scholar 

  164. Q. Cheng et al., Dalt. Trans. 48(13), 4119–4123 (2019). https://doi.org/10.1039/c9dt00386j

    Article  CAS  Google Scholar 

  165. Q. Cheng, C. Yang, L. Han, K. Tao, Batter. Supercaps 3(4), 370–375 (2020). https://doi.org/10.1002/batt.201900221

    Article  CAS  Google Scholar 

  166. B. Wang et al., RSC Adv. 10(21), 12129–12134 (2020). https://doi.org/10.1039/c9ra10467d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. X. Zhao, T. Kai, H. Lei, Nanoscale 14, 2155–2166 (2022). https://doi.org/10.1039/D1NR08284A

    Article  CAS  PubMed  Google Scholar 

  168. W. Cong-Huan, Z. Da-Wei, L. Shude, Y. Yusuke, Z. Fei-Bao, Y.V. Kaneti, Chem Commun 58(7), 1009–1012 (2022). https://doi.org/10.1039/D1DT00866H

    Article  Google Scholar 

  169. S. Xu et al., Electrochim. Acta 342, 136124 (2020). https://doi.org/10.1016/j.electacta.2020.136124

    Article  CAS  Google Scholar 

  170. Q. Bi, Q. Ma, K. Tao, L. Han, Dalton Trans. 50(23), 8179–8188 (2021)

    Article  CAS  PubMed  Google Scholar 

  171. X. Guan, M. Huang, L. Yang, G. Wang, X. Guan, Chem. Eng. J. 372, 151–162 (2019). https://doi.org/10.1016/j.cej.2019.04.145

    Article  CAS  Google Scholar 

  172. Y. Du et al., Chem. Eng. J. 378, 122210 (2019). https://doi.org/10.1016/j.cej.2019.122210

    Article  CAS  Google Scholar 

  173. C.V. McGuire, R.S. Forgan, Chem. Commun. 51(25), 5199–5217 (2015). https://doi.org/10.1039/c4cc04458d

    Article  CAS  Google Scholar 

  174. M. Hong et al., J. Power Sources 423(March), 80–89 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.059

    Article  CAS  Google Scholar 

  175. T. Yue, C. Xia, X. Liu, Z. Wang, K. Qi, B.Y. Xia, ChemElectroChem 8(6), 1021–1034 (2021). https://doi.org/10.1002/celc.202001418

    Article  CAS  Google Scholar 

  176. N. Patterson, B. Xiao, A. Ignaszak, RSC Adv. 10(34), 20162–20172 (2020). https://doi.org/10.1039/d0ra02154g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. L. Shao et al., J. Power Sources 379(January), 350–361 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.028

    Article  CAS  Google Scholar 

  178. Q. Wang, Q. Wang, B. Xu, F. Gao, F. Gao, C. Zhao, Electrochim. Acta 281, 69–77 (2018). https://doi.org/10.1016/j.electacta.2018.05.159

    Article  CAS  Google Scholar 

  179. D. Tian, S. Chen, W. Zhu, C. Wang, X. Lu, Mater. Chem. Front. 3(8), 1653–1660 (2019). https://doi.org/10.1039/C9QM00296K

    Article  CAS  Google Scholar 

  180. Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, J. Mater. Chem. A 4(48), 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e

    Article  CAS  Google Scholar 

  181. C.R. Rawool, S.P. Karna, A.K. Srivastava, Electrochim. Acta 294, 345–356 (2019). https://doi.org/10.1016/j.electacta.2018.10.093

    Article  CAS  Google Scholar 

  182. L. Chang Soo et al., Chem Eng J 406, 126810 (2021). https://doi.org/10.1016/j.cej.2020.126810

    Article  CAS  Google Scholar 

  183. J. Zhang, Y. Li, M. Han, Q. Xia, Q. Chen, M. Chen, Mater. Res. Bull. (2021). https://doi.org/10.1016/j.materresbull.2020.111186

    Article  Google Scholar 

  184. L. Yue et al., Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.121959

    Article  Google Scholar 

  185. G. Wang, Z. Yan, N. Wang, M. Xiang, Z. Xu, Acs Appl Nano Mater. 4(9), 9034–9043 (2021). https://doi.org/10.1021/acsanm.1c01628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Amruta D Salunkhe would like thank the Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune (Government of Maharashtra) for the financial support under the Chhatrapati Shahu Maharaj National Research Fellowship-2021. Authors are thankful to Department of Physics at Yashvantrao Chavan Institute of Science, Satara (Autonomous) and Rayat Institute of Research Development (RIRD) Satara for the laboratory facility.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ADS: Conceptualization, Formal analysis, Data curation, Writing—original draft. PKP: Data curation, Writing—review & editing. APT: Writing—review & editing, Supervision.

Corresponding author

Correspondence to A. P. Torane.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salunkhe, A.D., Pagare, P.K. & Torane, A.P. Review on Recent Modifications in Nickel Metal-Organic Framework Derived Electrode (Ni-MOF) Materials for Supercapacitors. J Inorg Organomet Polym 33, 287–318 (2023). https://doi.org/10.1007/s10904-022-02503-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02503-w

Keywords

Navigation