Skip to main content
Log in

Direct fabrication of mixed metal–organic frameworks (Ni/Cu-MOF) and C@NiCu2O4 onto Ni foam as binder-free high performance electrode for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cathodic electrodeposition has recently attracted considerable attention in the fabrication of porous materials such as metal–organic frameworks (MOFs) because of its advantages including controllability, simplicity, product continuously and mild synthesis conditions. Here, we report fabrication of the porous mixed metal oxides through in situ cathodic electrodeposition of pristine Ni,Cu-MOF onto Ni-foam followed by its calcination strategy. The as-prepared materials are characterized via structural and chemical analyses (i.e. XRD, FE-SEM, FT-IR, BET and TG-DSC) and also electrochemical tests (i.e. CV, GCD and EIS). The analyses results indicated that calcination of pristine MOF under at 650 °C in dry air atmosphere concludes mixed Ni/Cu-oxide with similar morphology to its MOF precursor. The results of electrochemical tests showed that the fabricated MOF-derived Ni/Cu-oxide electrode is capable to deliver a highest specific capacitance of 1525 F g−1 at a current density of 1 A g−1, which was higher than that of pristine Ni,Cu-MOF electrode (i.e. 942 F g−1). Rate capability of MOF-derived oxide was as high as 69.1% which was higher than that of Ni,Cu-MOF electrode (57%) by increasing the current density to 20 times. Excellent capacity retentions of 92.35% and 87.25% were also observed after 9000 GCD cycling at the current load of 5 A g−1, respectively, for Ni,Cu-MOF and Ni,Cu-oxide electrodes. Furthermore, MOF-derived oxide electrode displayed lower Rs and Rct values (0.36 Ω and 2.21 Ω, respectively) as compared with those of Ni,Cu-MOF electrode (i.e. 0.56 Ω and 2.54 Ω, respectively) verifying that the MOF-derived oxide electrode has high electrical conductivity and smaller kinetic barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, in Handbook of Clean Energy Systems (2015), pp. 1–25

  2. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  Google Scholar 

  3. M. Vangari, T. Pryor, L. Jiang, J. Energy Eng. 139, 72 (2013)

    Article  Google Scholar 

  4. A.S. Lemine, M.M. Zagho, T.M. Altahtamouni, N. Bensalah, Int. J. Energy Res. 42, 4284 (2018)

    Article  CAS  Google Scholar 

  5. R.S. Kate, S.A. Khalate, R.J. Deokate, J. Alloys Compd. 734, 89 (2018)

    Article  CAS  Google Scholar 

  6. Z.S. Iro, C. Subramani, S.S. Dash, Int. J. Electrochem. Sci. 11, 10628 (2016)

    Article  CAS  Google Scholar 

  7. K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, Inorg. Chim. Acta 446, 61 (2016)

    Article  CAS  Google Scholar 

  8. Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, Small 14, 1704435 (2018)

    Article  Google Scholar 

  9. S. Wu, J. Liu, H. Wang, H. Yan, Int. J. Energy Res. 43, 697 (2019)

    Article  CAS  Google Scholar 

  10. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, J. Mater. Sci.: Mater. Electron. 29, 2477 (2018)

    CAS  Google Scholar 

  11. S. Maiti, A. Pramanik, S. Mahanty, Chem. Commun. 50, 11717 (2014)

    Article  CAS  Google Scholar 

  12. S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, S. Qiu, J. Mater. Chem. A 3, 20145 (2015)

    Article  CAS  Google Scholar 

  13. G. Huang, F. Zhang, L. Zhang, X. Du, J. Wang, L. Wang, J. Mater. Chem. A 2, 8048 (2014)

    Article  CAS  Google Scholar 

  14. Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 6, 10474 (2018)

    Article  CAS  Google Scholar 

  15. S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 5646 (2011)

    Google Scholar 

  16. N. Al-Janabi, P.L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein, X. Fan, Chem. Eng. J. 281, 669 (2015)

    Article  CAS  Google Scholar 

  17. S. Baichuan, S. Kayal, A. Chakraborty, Energy 76, 419 (2014)

    Article  Google Scholar 

  18. G.W. Yang, C.L. Xu, H.L. Li, Chem. Commun. 48, 6537 (2008)

    Article  Google Scholar 

  19. D.J. Lee, Q. Li, H. Kim, K. Lee, Microporous Mesoporous Mater. 163, 169 (2012)

    Article  CAS  Google Scholar 

  20. Y. Cheng, M. Zhai, J. Hu, Appl. Surf. Sci. 480, 505 (2019)

    Article  CAS  Google Scholar 

  21. R. Rani, A. Deep, B. Mizaikoff, S. Singh, Vacuum 164, 449 (2019)

    Article  CAS  Google Scholar 

  22. J. Wang, M. Rao, C. Ye, Y. Qiu, W. Su, S. Zheng, J. Fan, S.L. Cai, W.G. Zhang, RSC Adv. 10, 4621 (2020)

    Article  Google Scholar 

  23. J. Wan, J. Li, Z. Xiao, D. Tang, B. Wang, Y. Xiao, W. Xu, Front. Mater. 7, 194 (2020)

    Article  Google Scholar 

  24. S. Maiti, A. Pramanik, U. Manju, S. Mahanty, ACS Appl. Mater. Interfaces. 7, 16357 (2015)

    Article  CAS  Google Scholar 

  25. S. Maiti, A. Pramanik, T. Dhawa, M. Sreemany, S. Mahanty, Mater. Sci. Eng., B 229, 27 (2018)

    Article  CAS  Google Scholar 

  26. J. Xu, C. Yang, Y. Xue, C. Wanga, J. Cao, Z. Chen, Electrochim. Acta 211, 595 (2016)

    Article  CAS  Google Scholar 

  27. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, J. Colloid Interface Sci. 531, 83 (2018)

    Article  CAS  Google Scholar 

  28. R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang, S. Sun, Y. Lei, Adv. Energy Mater. 2001537 (2020)

  29. H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, Nano-Micro Lett. 9, 43 (2017)

    Article  Google Scholar 

  30. X. Zhang, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, J. Materials Sci.: Mater. Electron. 30, 18101 (2019)

    CAS  Google Scholar 

  31. Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu, Y. Bao, L. Fan, W. Kang, F. Dai, R. Wang, L. Wang, S. Hu, D. Sun, H.C. Zhou, ACS Nano 13, 7024 (2019)

    Article  CAS  Google Scholar 

  32. D. Tian, N. Song, M. Zhong, X. Lu, C. Wang, ACS Appl. Mater. Interfaces. 12, 1280 (2020)

    Article  CAS  Google Scholar 

  33. C. Young, J. Kim, Y. Valentino Kaneti, Y. Yamauchi, A.C.S. Appl, Energy Mater. 1, 2007 (2018)

    CAS  Google Scholar 

  34. M. Aghazadeh, K. Yavari, H.F. Rad, K. Mohammadzadeh, J. Energy Storage 32, 101743 (2020)

    Article  Google Scholar 

  35. S. Zarabi Golkhatmi, M. Khalaj, A. Izadpanahi, A. Sedghi, Solid State Sci. 106, 106336 (2020)

    Article  Google Scholar 

  36. Y. Wang, S. Nie, Y. Liu, W. Yan, S. Lin, G. Cheng, H. Yang, J. Luo, Polymers 11, 821 (2019)

    Article  Google Scholar 

  37. S. Shin, M. Whan Shin, Appl. Surf. Sci. 540, 148295 (2021)

    Article  CAS  Google Scholar 

  38. Y. Han, J. Zhou, L. Wang, L. Xing, Z. Xue, Y. Jiao, Y. Pang, J. Electroanal. Chem. 882, 114993 (2021)

    Article  CAS  Google Scholar 

  39. H. Chen, Y. Huo, K. Cai, Y. Teng, Synth. Met. 276, 116761 (2021)

    Article  CAS  Google Scholar 

  40. M. Azadfalah, A. Sedghi, H. Hosseini, J. Mater. Sci.: Mater. Electron. 30, 12351 (2019)

    CAS  Google Scholar 

  41. Q. Tang, L. Ma, F. Cao, M. Gan, F. Yan, J. Mater. Sci.: Mater. Electron. 30, 9114 (2019)

    CAS  Google Scholar 

  42. R. Jia, C. Zhao, Z. Huang, X. Liu, D. Wang, Z. Hui, X. Xu, Ionics 26, 6309 (2020)

    Article  CAS  Google Scholar 

  43. X. Zhang, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, J. Mater. Sci.: Mater. Electron. 30, 18101 (2019)

    CAS  Google Scholar 

  44. X. Xu, C. Zhao, X. Liu, Y. Liu, P. Dong, C. Itani, J. Mater. Sci.: Mater. Electron. 31, 3631 (2020)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxing Guo.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G. Direct fabrication of mixed metal–organic frameworks (Ni/Cu-MOF) and C@NiCu2O4 onto Ni foam as binder-free high performance electrode for supercapacitors. J Mater Sci: Mater Electron 32, 16287–16301 (2021). https://doi.org/10.1007/s10854-021-06177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06177-x

Navigation