Skip to main content
Log in

Development of Illuminant Glow-in-the-Dark Cotton Fabric Coated by Luminescent Composite with Antimicrobial Activity and Ultraviolet Protection

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The main objective of technical protective clothing is to enhance people safety at work, which may save their life or keep them healthy away against some hazards. We developed a warning cotton fabric with a traffic safety warning photoluminescence character that continues emitting light for a long period of time after the removal of the illuminant source. Rare earth-doped strontium aluminate was dispersed in an aqueous medium of a polyacrylic-based binder to give a cross-linkable photoluminescent formula to be applied onto cotton substrate employing spray-coat approach. To introduce a transparent photoluminescent film, the Rare earth pigment must be fully dispersed to prevent aggregation. The long-persistent photoluminescent layer was deposited on cotton surface employing different concentrations of the rare earth pigment phosphor. The excitation wavelength maximum band of the spray-coated film on cotton fabric was found to occur at 365 nm, while the emission was recorded at 515 nm. Yellowish-green emissive color was monitored by CIE color data under the ultraviolet excitation source. The spray-coated fabric was characterized by wavelength dispersive X-ray fluorescence (WD-XRF), phosphorescence and excitation spectra, elements mapping, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The comfort measurements were studied by exploring both of fabric stiffness and air-permeability. Furthermore, the spray-coated textile substrates displayed good fastness properties and a reversible luminescent glow in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Rome L, Ivers R, Fitzharris M, Du W, Haworth N, Heritier S, Richardson D (2011) Motorcycle protective clothing: protection from injury or just the weather? Accid Anal Prev 43(6):1893–1900

    Article  PubMed  Google Scholar 

  2. Khattab TA, Gabr AM, Mostafa AM, Hamouda T (2019) Luminescent plant root: a step toward electricity-free natural lighting plants. J Mol Struct 1176:249–253

    Article  CAS  Google Scholar 

  3. Ianos R, Istratie R, Păcurariu C, Lazău R (2016) Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach. Phys Chem Chem Phys 18(2):1150–1157

    Article  CAS  PubMed  Google Scholar 

  4. Khattab TA, Rehan M, Hamdy Y, Shaheen TI (2018) Facile development of Photoluminescent textile fabric via spray coating of Eu (II)-Doped strontium aluminate. Ind Eng Chem Res 57(34):11483–11492

    Article  CAS  Google Scholar 

  5. Bite I, Krieke G, Zolotarjovs A, Laganovska K, Liepina V, Smits K, Auzins K, Grigorjeva L, Millers D, Skuja L (2018) Novel method of phosphorescent strontium aluminate coating preparation on aluminum. Mater Des 160:794–802

    Article  CAS  Google Scholar 

  6. Khattab TA, Abou-Yousef H, Kamel S (2018) Photoluminescent spray-coated paper sheet: write-in-the-dark. Carbohydr Polym 200:154–161

    Article  CAS  PubMed  Google Scholar 

  7. Sahu IP, Bisen DP, Brahme N, Tamrakar RK (2016) Generation of white light from dysprosium-doped strontium aluminate phosphor by a solid-state reaction method. J Electron Mater 45(4):2222–2232

    Article  CAS  Google Scholar 

  8. Yan B, Lin L, Wu J, Lei F (2011) Photoluminescence of rare earth phosphors Na 0.5 Gd 0.5 WO 4: RE 3+ and Na 0.5 Gd 0.5 (Mo 0.75 W 0.25) O 4: RE 3+(RE= Eu, Sm, Dy). J fluoresc 21(1):203–211

    Article  CAS  PubMed  Google Scholar 

  9. Khattab TA, Rehan M, Hamouda T (2018) Smart textile framework: photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohydr Polym 195:143–152

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Wang Q-M, Xiang Y-Q, Yan B (2006) Luminescent behavior of two novel thermo-sensitive poly (N-isopropylacrylamide) hydrogels incorporated with rare earth complexes. J fluoresc 16(5):723–726

    Article  CAS  PubMed  Google Scholar 

  11. Sahu IP, Bisen DP, Brahme N, Tamrakar RK (2016) Luminescence behavior of europium activated strontium aluminate phosphors by solid state reaction method. J Mater Sci Mater Electron 27(4):3443–3455

    Article  CAS  Google Scholar 

  12. Akmehmet GI, Šturm S, Bocher L, Kociak M, Ambrožič B, Ow-Yang CW (2016) Structure and luminescence in long persistence Eu, Dy, and B codoped strontium aluminate phosphors: the boron effect. J Am Ceram Soc 99(6):2175–2180

    Article  CAS  Google Scholar 

  13. Sanad MMS, Rashad MM (2016) Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+−activated mixed strontium aluminate phosphors with different rare earth co-activators. J Mater Sci Mater Electron 27(9):9034–9043

    Article  CAS  Google Scholar 

  14. Yan B, Cai X, Xiao X (2009) Photoluminescence Enhancement Effect of CeO 2 in Rare Earth Composites MM′ O 3/CeO 2 and MM′ O 3/CeO 2: Pr 3+(M= Ca, Sr; M′= Ti, Zr). J Fluoresc 19(2):221–228

    Article  CAS  PubMed  Google Scholar 

  15. Rehan M, Khattab TA, Barohum A, Gätjen L, Wilken R (2018) Development of Ag/AgX (X= Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr Polym 197:227–236

    Article  CAS  PubMed  Google Scholar 

  16. Crouch IG, Arnold L, Pierlot A, Billon H (2017) Fibres, textiles and protective apparel. In The Science of Armour Materials, pp. 269–330

  17. Horrocks AR, Anand SC, eds. Handbook of technical textiles. Elsevier (2000)

  18. Khattab TA, Fouda MMG, Allam AA, Othman SI, Bin-Jumah M, Al-Harbi HM, Rehan M (2018) Selective colorimetric detection of Fe (III) using Metallochromic tannin-impregnated silica strips. ChemistrySelect 3(43):12065–12071

    Article  CAS  Google Scholar 

  19. Holme I (2007) Innovative technologies for high performance textiles. Color Technol 123(2):59–73

    Article  CAS  Google Scholar 

  20. Abdelmoez S, Abd El Azeem RA, Nada AA, Khattab TA (2016) Electrospun PDA-CA Nanofibers toward Hydrophobic Coatings. Z Anorg Allg Chem 642(3):219–221

    Article  CAS  Google Scholar 

  21. Kumar RS (2016) Textiles for industrial applications. CRC Press

  22. Khattab TA, Aly SA, Klapötke TA (2018) Naked-eye facile colorimetric detection of alkylphenols using Fe (III)-impregnated silica-based strips. Chem Pap 72(6):1553–1559

    Article  CAS  Google Scholar 

  23. Serbezeanu D, Popa AM, Stelzig T, Sava I, Rossi RM, Fortunato G (2015) Preparation and characterization of thermally stable polyimide membranes by electrospinning for protective clothing applications. Text Res J 85(17):1763–1775

    Article  CAS  Google Scholar 

  24. Saini A, Christenson CW, Khattab TA, Wang R, Twieg RJ, Singer KD (2017) Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage. J Appl Phys 121(4):043101

    Article  CAS  Google Scholar 

  25. Hurwitz M (2001) Safety and sports equipment, apparel and accessories using electroluminescent fibers for illumination. U.S. Patent Application 09/728,083

  26. Khattab TA (2018) Novel solvatochromic and halochromic sulfahydrazone molecular switch. J Mol Struct 1169:96–102

    Article  CAS  Google Scholar 

  27. Khattab TA, Gaffer HE, Aly SA, Klapötke TM (2016) Synthesis, Solvatochromism, antibacterial activity and dyeing performance of Tricyanofuran-Hydrazone analogues. ChemistrySelect 1(21):6805–6809

    Article  CAS  Google Scholar 

  28. Golle J, Golle A (2004) Safety vest and other clothing articles. U.S. Patent 6,769,138

  29. Holce ME (2000) Universal mount for EL lights, retroreflective sheeting materials, and reflectors. U.S. Patent 6,086,213

  30. Abou-Yousef H, Khattab TA, Youssef YA, Al-Balakocy N, Kamel S (2017) Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes. Talanta 170:137–145

    Article  CAS  PubMed  Google Scholar 

  31. Khattab TA, Rehan M, Aly SA, Hamouda T, Haggag KM, Klapötke TM (2017) Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: Naked-eye colorimetric sensor. J Environ Chem Eng 5(3):2515–2523

    Article  CAS  Google Scholar 

  32. Horrocks AR (2016) Technical textiles in transport (land, sea, and air). In Handbook of Technical Textiles (Second Edition), pp. 325–356

  33. Barnes FP, Barnes FP (1993) Illuminated protective clothing. US Patent 5,249,106

  34. Zhao J, Wang X, Liu L, Yu J, Ding B (2018) Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. ACS Appl Mater Interfaces 10(36):30887–30894

    Article  CAS  PubMed  Google Scholar 

  35. Khattab TA, Haggag KM, Elnagdi MH, Abdelrahman AA, Aly SA (2016) Microwave-assisted synthesis of arylazoaminopyrazoles as disperse dyes for textile printing. Z Anorg Allg Chem 642(13):766–772

    Article  CAS  Google Scholar 

  36. Khattab TA, Elnagdi MH, Haggaga KM, Abdelrahmana AA, Aly SA (2017) Green synthesis, printing performance, and antibacterial activity of disperse dyes incorporating arylazopyrazolopyrimidines. AATCC J Res 4(4):1–8

    Article  CAS  Google Scholar 

  37. Khattab T, Haggag KM (2017) Synthesis and spectral properties of symmetrical and asymmetrical 3-cyano-1, 5-diarylformazan dyestuffs for dyeing polyester fabrics. Egypt J Chem 60:33–40

    Google Scholar 

  38. Fei B (2018) High-performance fibers for textiles. In Engineering of High-Performance Textiles, pp. 27–58

  39. Chien T-L, Wu P-H (1996) Soft light-strip. U.S. Patent 5,570,945

  40. Klein A (2000) Night visibility enhanced clothing and dog leash. U.S. Patent 6,085,698

  41. Gaffer H, Khattab T (2017) Synthesis and characterization of some azo-heterocycles incorporating pyrazolopyridine moiety as disperse dyes. Egypt J Chem 60:41–47

    Google Scholar 

  42. Khattab TA (2018) Synthesis and Self-assembly of Novel s-Tetrazine-based Gelator. Helvetica Chimica Acta 101(4):e1800009

    Article  CAS  Google Scholar 

  43. Habibi M, Eslamian M, Soltani-Kordshuli F, Zabihi F (2016) Controlled wetting/dewetting through substrate vibration-assisted spray coating (SVASC). J Coat Technol Res 13(2):211–225

    Article  CAS  Google Scholar 

  44. Zabihi F, Ahmadian-Yazdi M-R, Eslamian M (2016) Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC). Nanoscale Res Lett 11(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bu Q, Zhan Y, He F, Lavorgna M, Xia H (2016) Stretchable conductive films based on carbon nanomaterials prepared by spray coating. J Appl Polym Sci 133(15):43243

    Article  CAS  Google Scholar 

  46. Kalsi SS, Sidhu TS, Singh H, Karthikeyan J (2016) Behavior of cold spray coating in real incineration environment. Mater Manuf Process 31(11):1468–1475

    Article  CAS  Google Scholar 

  47. Zabihi F, Eslamian M (2015) Characteristics of thin films fabricated by spray coating on rough and permeable paper substrates. J Coat Technol Res 12(3):489–503

    Article  CAS  Google Scholar 

  48. Cohen RE, Rubner MF, Chen D, Polak R, Song K, Askar K (2018) Spray-coating method with particle alignment control. U.S. Patent Application 15/635,159

  49. Li Y, Arumugam S, Krishnan C, Charlton MDB, Beeby SP (2019) Encapsulated textile organic solar cells fabricated by spray coating. ChemistrySelect 4(1):407–412

    Article  CAS  Google Scholar 

  50. Liu F, Lin Z, Jin Q, Wu Q, Yang C, Chen H-J, Cao Z et al (2019) Protection of nano-structures-integrated microneedle biosensor using dissolvable polymer coating. Acs Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b18981

  51. Zabihi F, Eslamian M (2017) Low-cost transparent graphene electrodes made by ultrasonic substrate vibration-assisted spray coating (SVASC) for thin film devices. Graphene Technol 2(1–2):1–11

    Article  Google Scholar 

  52. Gazulla MF, Rodrigo M, Vicente S, Orduña M (2010) Methodology for the determination of minor and trace elements in petroleum cokes by wavelength-dispersive X-ray fluorescence (WD-XRF). X-Ray Spectrom 39(5):321–327

    Article  CAS  Google Scholar 

  53. d’Alfonso AJ, Freitag B, Klenov D, Allen LJ (2010) Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81(10):100101

    Article  CAS  Google Scholar 

  54. Herzing AA, Watanabe M, Edwards JK, Conte M, Tang Z-R, Hutchings GJ, Kiely CJ (2008) Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss 138:337–351

    Article  CAS  PubMed  Google Scholar 

  55. Spurgeon SR, Du Y, Chambers SA (2017) Measurement error in atomic-scale scanning transmission electron microscopy-nergy-dispersive X-ray spectroscopy (STEM-EDS) mapping of a model oxide interface. MicroscMicroanal 23(3):513–517

    CAS  Google Scholar 

  56. Ren X, Zhang D, Tong L, Chen X, Ding H, Yang H (2014) The effects of Gd3+ doping on the ferromagnetic and photoluminescence properties of co (Fe, Gd) 2O4@ SiO2@(Y, Gd) 2O3: Eu3+ composites. Dyes Pigments 111:91–98

    Article  CAS  Google Scholar 

  57. Wang Y, Wu W, Fu X, Liu M, Cao J, Shao C, Chen S (2017) Metastable scheelite CdWO4: Eu3+ nanophosphors: Solvothermal synthesis, phase transitions and their polymorph-dependent luminescence properties. Dyes Pigments 147:283–290

    Article  CAS  Google Scholar 

  58. Van den Eeckhout K, Smet PF, Poelman D (2010) Persistent luminescence in Eu2+−doped compounds: a review. Materials 3(4):2536–2566

    Article  CAS  PubMed Central  Google Scholar 

  59. Lakowicz JR, Cherek H, Kuśba J, Gryczynski I, Johnson ML (1993) Review of fluorescence anisotropy decay analysis by frequency-domain fluorescence spectroscopy. J Fluoresc 3(2):103–116

    Article  CAS  PubMed  Google Scholar 

  60. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

  61. Baryshnikov G, Minaev B, Agren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117(9):6500–6537

    Article  CAS  PubMed  Google Scholar 

  62. Tiwari RS, Ludescher RD (2010) Vanillin phosphorescence as a probe of molecular mobility in amorphous sucrose. J Fluoresc 20(1):125–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Technical support from National Research Centre, Cairo, Egypt; is gratefully acknowledged. This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Research Groups Program Grant no. (RGP-1440-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfik A. Khattab.

Ethics declarations

Competing Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, T.A., Fouda, M.M.G., Abdelrahman, M.S. et al. Development of Illuminant Glow-in-the-Dark Cotton Fabric Coated by Luminescent Composite with Antimicrobial Activity and Ultraviolet Protection. J Fluoresc 29, 703–710 (2019). https://doi.org/10.1007/s10895-019-02384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02384-2

Keywords

Navigation