Skip to main content
Log in

Low-cost transparent graphene electrodes made by ultrasonic substrate vibration-assisted spray coating (SVASC) for thin film devices

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

In an attempt to replace expensive and rigid transparent conductive oxides, used as electrodes in thin film devices, in this study, transparent graphene electrodes (TGEs) are fabricated by conventional spray coating and ultrasonic substrate vibration-assisted spray coating. Systematic characterizations of the TGEs and indium tin oxide (ITO) demonstrate comparable and even better surface and morphological characteristics, film coverage, surface potential distribution and suitable work function of the spray-on TGEs compared to those of the reference ITO electrode. A lower transmittance, electrical conductivity and charge quenching potential are observed in the TGEs compared to those of the reference ITO, which may be further improved by process optimization. As a proof of concept, the TGE was incorporated into a perovskite solar cell, where power conversion efficiency of 3.54% was achieved, which is promising given that the developed graphene electrode was fabricated using scalable and low-cost spray coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Habibi M, Zabihi F, Ahmadian-Yazdi MR, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells—part II: perovskite solar cells. Renew Sustain Energy Rev 62:1012–1031

    Article  Google Scholar 

  2. Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells—part I: polymer solar cells. Renew Sustain Energy Rev 56:347–361

    Article  Google Scholar 

  3. Eslamian M (2017) Inorganic and organic solution-processed thin film devices. Nano Micro Lett. doi:10.1007/s40820-016-0106-4

    Google Scholar 

  4. Yeo JS, Kang R, Lee S, Jeon YJ, Myoung NS, Lee CL, Kim DY, Yun JM, Seo YH, Kime OS, Na SI (2015) Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nano-sheets as electrode interlayer. Nano Energy 12:96–104

    Article  Google Scholar 

  5. Kumar-Jena A, Chen HW, Kogo A, Sanehira Y, Ikegami M, Miyasaka T (2015) The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces 7:9817–9823

    Article  Google Scholar 

  6. Alemu D, Wei HY, Ho KC, Chu CW (2012) Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671

    Article  Google Scholar 

  7. Soltani-Kordshuli F, Zabihi F, Eslamian M (2016) Graphene-doped PEDOT:PSS nano-composite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Eng Sci Technol Int J 19:1216–1223

    Article  Google Scholar 

  8. Vaianella F, Rosolen G, Maes B (2015) Graphene as a transparent electrode for amorphous silicon-based solar cells. J Appl Phys 117:243102

    Article  Google Scholar 

  9. Tavakoli MM, Simchi A, Fan Z, Aashuri H (2016) Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chem Commun 52:323–326

    Article  Google Scholar 

  10. Xu X, Huang D, Cao K, Wang M, Zakeeruddin SM, Gratzel M (2013) Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci Rep 3:1489

    Article  Google Scholar 

  11. Kavan L, Liska P, Zakeeruddin SM, Gratzel M (2016) Low-temperature fabrication of highly-efficient, optically-transparent (FTO-free) graphene cathode for co-mediated dye-sensitized solar cells with acetonitrile-free electrolyte solution. Electrochim Acta 195:34–42

    Article  Google Scholar 

  12. Dodoo-Arhin D, Howe RCT, Hu G, Zhang Y, Hiralal P, Bello A, Amaratunga G, Hasan T (2016) Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105:33–41

    Article  Google Scholar 

  13. Yang W, Xu X, Li Z, Yang F, Zhang L, Li Y, Wang A, Chen S (2016) Construction of efficient counter electrodes for dye-sensitized solar cells: Fe2O3 nanoparticles anchored onto graphene frameworks. Carbon 96:947–954

    Article  Google Scholar 

  14. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302

    Article  Google Scholar 

  15. Yin Z, Sun S, Salim T, Wu S, Huang X, He Q, Lam YM, Zhang H (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4:5263–5268

    Article  Google Scholar 

  16. Liu Z, Li J, Yan F (2013) Package-free flexible organic solar cells with graphene top electrodes. Adv Mater 25:4296–4301

    Article  Google Scholar 

  17. Lima LF, Matos CF, Gonçalves LC, Salvatierra RV, Cava CE, Zarbin AJG, Roman LS (2016) Water based, solution-processable, transparent and flexible graphene oxide composite as electrodes in organic solar cell application. J Phys D Appl Phys 49:105106

  18. Batmunkh M, Shearer CJ, Biggsac MJ, Shapter JG (2016) Solution processed graphene structures for perovskite solar cells. J Mater Chem A 4:2605–2616

    Article  Google Scholar 

  19. Sung H, Ahn N, Jang MS, Lee JK, Yoon H, Park NG, Choi M (2016) Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv Energy Mater. doi:10.1002/aenm.201501873

    Google Scholar 

  20. Liu Z, You P, Xie C, Tang G, Yan F (2016) Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28:151–157

  21. Yan K, Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S (2015) High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11:2269–2274

    Article  Google Scholar 

  22. You P, Liu Z, Tai Q, Liu S, Yan F (2015) Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater 27:3632–3638

    Article  Google Scholar 

  23. Paletti P, Pawar R, Ulisse G, Brunetti F, Iannaccone G, Fiori G (2015) Can graphene outperform indium tin oxide as transparent electrode in organic solar cells? 2D Mater 2:045006

    Article  Google Scholar 

  24. Zabihi F, Eslamian M (2015) Substrate vibration-assisted spray coating (SVASC): significant improvement in nano-structure, uniformity, and conductivity of PEDOT:PSS thin films for organic solar cells. J Coat Technol Res 12:711–719

  25. Habibi M, Eslamian M, Soltani-Kordshuli F, Zabihi F (2016) Controlled wetting/dewetting through substrate vibration-assisted spray coating (SVASC). J Coat Technol Res 13:211–225

    Article  Google Scholar 

  26. Zabihi F, Ahmadian-Yazdi MR, Eslamian M (2016) Fundamental study on the fabrication of planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC). Nanoscale Res Lett 11:71

    Article  Google Scholar 

  27. Chen Q, Zabihi F, Eslamian M (2016) Improved functionality of PEDOT: PSS thin films via graphene doping, fabricated by ultrasonic substrate vibration-assisted spray coating. Synth Met 222B:309–317. doi:10.1016/j.synthmet.2016.11.009

    Article  Google Scholar 

  28. Xie Y, Zabihi F, Eslamian M (2016) Fabrication of highly reproducible polymer solar cells using ultrasonic substrate vibration posttreatment. J Photonics Energy 6:045502

    Article  Google Scholar 

  29. Naik G, Krishnaswamy S (2016) Room-temperature humidity sensing using graphene oxide thin films. Graphene 5:1–13

    Article  Google Scholar 

  30. El Gemayel M, Narita A, Dossel LF, Sundaram RS, Kiersnowski A, Pisula W, Hansen MR, Ferrari AC, Orgiu E, Feng X, Mullen K, Samor P (2014) Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale 6:6301–6314

    Article  Google Scholar 

  31. Ju HM, Choi SH, Huh SH (2010) X-ray diffraction patterns of thermally-reduced graphenes. J Korean Phys Soc 57:1649–1652

    Article  Google Scholar 

  32. Touskov J, Ludvík J, Liska A, Remes Z, Kylian O, Kousal J, Chomutova R, Heckler IM, Bundgaard E, Krebs FC (2016) Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage. Solid State Electron 116:111–118

    Article  Google Scholar 

  33. Zabihi F, Chen Q, Xie Y, Eslamian M (2016) Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment. Superlattices Microstruct 100:1177–1192

    Article  Google Scholar 

  34. Wan Y, Li Y, Wang Q, Zhang K, Wu Y (2012) The relationship of surface roughness and work function of pure silver by numerical modeling. Int J Electrochem Sci 7:5204–5216

    Google Scholar 

  35. Yang D, Yang R, Zhang J, Yang Z, Liu S, Li C (2015) High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci 8:3208–3214

    Article  Google Scholar 

  36. Tathavadekar MC, Agarkar SA, Game OS, Bansode UP, Kulkarni SA, Mhaisalkar SG, Ogale SB (2015) Enhancing efficiency of perovskite solar cell via surface microstructuring: superior grain growth and light harvesting effect. Sol Energy 112:12–19

    Article  Google Scholar 

  37. Shafiee A, Mat Salleh M, Yahaya M (2011) Determination of HOMO and LUMO of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester and poly (3-octyl-thiophene-2, 5-diyl) through voltammetry characterization. Sains Malays 40:173–176

    Google Scholar 

  38. Mak KF, Ju L, Wang F, Heinz TF (2012) Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun 152:1341–1349

    Article  Google Scholar 

  39. Chen LM, Xu Z, Hong Z, Yang Y (2010) Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J Mater Chem 20:2575–2598

    Article  Google Scholar 

  40. Paek S, Cho N, Choi H, Jeong H, Lim JS, Hwang JY, Lee JK, Ko J (2014) Improved external quantum efficiency from solution-processed (CH3NH3)PbI3 perovskite/PC71BM Planar heterojunction for high efficiency hybrid solar cells. J Phys Chem C 118:25899–25905

    Article  Google Scholar 

  41. Dong H, Wu Z, Xia B, Xi J, Yuan F, Ning S, Xiao L, Hou X (2015) Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chem Commun 51:8986–8989

    Article  Google Scholar 

  42. Leonat L, Sbracea G, Branzoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull Ser B 75:111–118

    Google Scholar 

  43. Rahimzadeh A, Eslamian M (2017) Stability of thin films of liquid solutions subjected to ultrasonic substrate vibration and characteristics of the resulting thin solid films. Chem Eng Sci 158:587–598. doi:10.1016/j.ces.2016.11.006

    Article  Google Scholar 

  44. Maurano A, Hamilton R, Shuttle CG, Ballantyne AM, Nelson J, Regan BO, Zhang W, McCulloch I, Azimi H, Morana M, Brabec CJ, Durrant JR (2010) Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv Mater 22:4987–4992

    Article  Google Scholar 

  45. Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith HJ (2014) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730

    Article  Google Scholar 

  46. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH, Liu Y, Li G, Yang Y (2014) Planar hetero-junction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136:622–625

    Article  Google Scholar 

  47. Di C, Yu G, Liu Y, Xu X, Song Y, Zhu D (2006) Effective modification of indium tin oxide for improved hole injection in organic light emitting diodes. Appl Phys Lett 89:033502

    Article  Google Scholar 

  48. Yu JC, Jang JI, Lee BR, Lee GW, Han JT, Song MH (2014) Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer. ACS Appl Mater Interfaces 6:2067–2073

    Article  Google Scholar 

  49. You J, Hong Z, Yang Y, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H, Yang Y (2014) Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8:1674–1680

    Article  Google Scholar 

  50. Eslamian M (2014) Spray-on thin film PV solar cells: advances, potentials and challenges. Coatings 4:60–84

    Article  Google Scholar 

Download references

Acknowledgements

Research funding from the Shanghai Municipal Education Commission in the framework of the oriental scholar and funding from the National Natural Science Foundation of China (NSFC) is acknowledged. FZ acknowledges research fund from the Postdoctoral Research Foundation of China. Authors wish to thank Mohammad Reza Ahamdian-Yazdi for assisting with device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Eslamian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabihi, F., Eslamian, M. Low-cost transparent graphene electrodes made by ultrasonic substrate vibration-assisted spray coating (SVASC) for thin film devices. Graphene Technol 2, 1–11 (2017). https://doi.org/10.1007/s41127-017-0003-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-017-0003-8

Keywords

Navigation