Skip to main content
Log in

Luminescence behavior of europium activated strontium aluminate phosphors by solid state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The SrAl2O4:Eu2+ and SrAl2O4:Eu3+ phosphors were prepared by the traditional high temperature solid state reaction method. The crystal structures of the prepared phosphors were consistent with standard monoclinic phase with a space group P21. The different TL kinetics parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] were evaluated and compared by using the peak shape method. Under the ultra-violet excitation (344 nm), the SrAl2O4:Eu2+ phosphor would emit green light, belonging to the broad emission band ascribed to the 4f65d1 → 4f7 transition. The emission spectrum of SrAl2O4:Eu3+ phosphor was consisted of two emission peaks at 590 and 615 nm, which were attributed to 5D0 → 7F1 and 5D0 → 7F2 of Eu3+ ions. The strongest excitation band at 396 nm can be assigned to 7F0 → 5L6 transition of Eu3+ ions due to the typical f–f transitions of 4f6 configuration. Commission International de I’Eclairage color coordinates of prepared SrAl2O4:Eu2+ and SrAl2O4:Eu3+ phosphors were suitable as green and orange-red light respectively. The mechanoluminescence (ML) intensity of prepared SrAl2O4:Eu2+ and SrAl2O4:Eu3+ phosphors increase linearly with increasing impact velocity of the moving piston (load). Thus the present investigation indicates that the piezoelectricity was responsible to produce ML in sintered phosphors. Decay rates for different impact velocities were also calculated using curve-fitting techniques. The time of the peak ML and the rate of decay did not change significantly with respect to increasing impact velocity of the moving piston and peak ML intensity varied linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.Y. Jiao, Y. Wang, Phys. B 407, 2729 (2012)

    Article  Google Scholar 

  2. K.E. Foka, F.B. Dejene, H.C. Swart, Phys. B 439, 177 (2014)

    Article  Google Scholar 

  3. B.M. Mothudi, O.M. Ntwaeaborwa, J.R. Botha, H.C. Swart, Phys. B 404, 4440 (2009)

    Article  Google Scholar 

  4. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamtakar, J. Radiat. Res. Appl. Sci. 8, 104 (2015)

    Article  Google Scholar 

  5. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, T.L. Mercier, Solid State Sci. 9, 608 (2007)

    Article  Google Scholar 

  6. E. Nakazawa, Y. Murazaki, S. Saito, J. Appl. Phys. 100, 113 (2006)

    Google Scholar 

  7. R. Chen, Y. Wang, Y. Hu, Z. Hu, C. Liu, J. Lumin. 128, 1180 (2008)

    Article  Google Scholar 

  8. Y. Ding, Y. Zhang, Z. Wang, W. Li, D. Mao, H. Han, C. Chang, J. Lumin. 129, 294 (2009)

    Article  Google Scholar 

  9. I.P. Sahu, D.P. Bisen, N. Brhame, R.K. Tamrakar, R. Shrivastava. J. Mater. Sci. Mater. Electron. 26(11), 8824 (2015)

    Article  Google Scholar 

  10. T. Joseph, M.T. Sebastian, J. Am. Ceram. Soc. 93, 147 (2010)

    Article  Google Scholar 

  11. M. Xu, L. Wang, L. Liu, D. Jia, R. Sheng, J. Lumin. 146, 475–479 (2014)

    Article  Google Scholar 

  12. K. Machida, G. Adachi, J. Shiokawa, J. Lumin. 21, 101–106 (1979)

    Article  Google Scholar 

  13. Z.W. Pei, Q. Su, J.Y. Zhang, J. Alloys Compd. 198, 51–55 (1993)

    Article  Google Scholar 

  14. D.R. Vij, Luminescence of solids (Plenum Press, New York, 1998)

    Book  Google Scholar 

  15. C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74(17), 2414 (1999)

    Article  Google Scholar 

  16. C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Watanabe, Appl. Phys. Lett. 76(2), 179 (2000)

    Article  Google Scholar 

  17. C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74(9), 1236 (1999)

    Article  Google Scholar 

  18. JCPDS file number 34-0379, JCPDS International Center for Diffraction Data

  19. H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, J. Mater. Mater. Sci. Eng. B 178(12), 834 (2013)

    Article  Google Scholar 

  20. M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583 (2011)

    Google Scholar 

  21. T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, J. Electrochem. Soc. 150, H111 (2003)

    Article  Google Scholar 

  22. R. Chen, J. Appl. Phys. 40, 570 (1969)

    Article  Google Scholar 

  23. I.P. Sahu, P. Chandrakar, R.N. Baghel, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Alloys Compd. 649, 1329 (2015)

    Article  Google Scholar 

  24. I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. 30(7), 1125 (2015)

    Article  Google Scholar 

  25. I.P. Sahu, D.P. Bisen, N. Brahme, Res. Chem. Intermed. 41(9), 6649 (2015)

    Article  Google Scholar 

  26. I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. 41(11), 8797 (2015)

    Article  Google Scholar 

  27. L. Ozawa, Cathodoluminescence and photoluminescence: theories and practical applications (CRC Press Taylor & Francis Group, Boca Raton, 2007)

    Book  Google Scholar 

  28. I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. 30(5), 526 (2015)

    Article  Google Scholar 

  29. N. Lakshminarasimhan, U.V. Varadaraju, Mater. Res. Bull. 43, 2946 (2008)

    Article  Google Scholar 

  30. H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, J. Lumin. 131, 2441 (2011)

    Article  Google Scholar 

  31. I.P. Sahu, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 8(3), 381 (2015)

    Article  Google Scholar 

  32. CIE, International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) (1931)

  33. T. Aitasalo, P. Daren, J. Holsa, K. Junger, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, J. Solid State Chem. 171, 114 (2003)

    Article  Google Scholar 

  34. H. Wu, Y. Hu, Y. Wang, F. Kang, Z. Mou, Opt. Laser Technol. 43, 1104 (2011)

    Article  Google Scholar 

  35. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 35, 279 (2014)

    Article  Google Scholar 

  36. H. Zhang, C.N. Xu, N. Terasaki, H. Yamada, Phys. E 42, 2872 (2010)

    Article  Google Scholar 

  37. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Lumin. 167, 278 (2015)

    Article  Google Scholar 

  38. I.P. Sahu, J. Mater. Sci. Mater. Electron. 26(9), 7059 (2015)

    Article  Google Scholar 

  39. R. Shrivastava, J. Kaur, B.P. Chandra, J. Biol. Chem. Lumin. (2015). doi:10.1002/bio.2882

    Google Scholar 

  40. R. Shrivastava, J. Kaur, Chin. Chem. Lett. (2015). doi:10.1016/j.cclet.2015.05.028

    Google Scholar 

  41. B.P. Chandra, A.S. Rathore, Cryst. Res. Technol. 30, 885 (1995)

    Article  Google Scholar 

  42. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwar Prasad Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, I.P., Bisen, D.P., Brahme, N. et al. Luminescence behavior of europium activated strontium aluminate phosphors by solid state reaction method. J Mater Sci: Mater Electron 27, 3443–3455 (2016). https://doi.org/10.1007/s10854-015-4177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4177-7

Keywords

Navigation