Skip to main content

Advertisement

Log in

Review on thermochromic materials: development, characterization, and applications

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Thermochromism and thermochromic materials research and development are of great interest because of their importance in versatile applications with respect to energy-efficient building structures, textile industries, thermal or heat storage, antique maintenance processing and sensors. In general, thermochromic materials have been classified into four categories including inorganic, organic, polymeric, and hybrid systems, based on their unique material properties and operating conditions. Thermochromic materials have been prepared via different physicochemical techniques with some of them combined to maximize the yield, stability, and efficiency of the prepared TCMs. Pristine TCMs often undergo severe degradation when exposed to various external stimuli including UV irradiation from sunlight and ambient environmental conditions such as temperature, pressure, and humidity variations. Such degradation causes property and physical behavioral changes in TCMs. Various microencapsulation procedures and coating techniques are utilized to enhance the thermochromic performance of the materials and to protect the core TCMs from the degradation. Many desirable candidate materials have been developed, and extensive metrological tools have been deployed to understand the structural, morphological, microstructural, thermal, chemical, surface, and interfacial characteristics of these TCMs and their microencapsulated variants. The potential applications of the microencapsulated TCMs in industrial, commercial, and residential sectors are briefly discussed in this review paper. The future looks bright for the development of novel microencapsulated TCMs possessing nanostructural derived properties that can be effectively used in inks, paints, and coating agents for sustainable energy efficiency and many other applications.

Graphical abstract

Enhanced energy efficiency of buildings with smart coatings of microencapsulated TCMs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

TCMs:

Thermochromic Materials

HOMO:

Highest Occupied Molecular Orbital

LUMO:

Lowest Occupied Molecular Orbital

LCAO:

Linear Combination of Atomic Orbitals

CN:

Coordination Number

ITCM:

Inorganic Thermochromic Material

OTCM:

Organic Thermochromic Material

CVL:

Crystal Violet Lactone

UV:

Ultraviolet

XRD:

X-ray Diffraction

FESEM:

Field Emission Scanning Electron Microscope

SEE-C:

Continuous Supercritical Emulsion Extraction

CTPCM:

Composite Thermochromic and Phase Change Materials

TLD:

Thermochromic Leuco Dye

PVD:

Physical Vapor Deposition

PLD:

Pulsed Laser Deposition

CVD:

Chemical Vapor Deposition

COD:

Chemical Oxygen Demand

References

  1. Desideri, U, Asdrubali, F, Handbook of Energy Efficiency in Buildings: A Life Cycle Approach. Butterworth-Heinemann (2018)

  2. Fan, M, Fu, F, Advanced High Strength Natural Fibre Composites in Construction. Woodhead Publishing, Cambridge (2016)

    Google Scholar 

  3. Muthyala, R, Chemistry and Applications of Leuco Dyes. Springer, Berlin (2006)

    Google Scholar 

  4. Jorgenson, G, “Thermochromic Materials and Devices Inorganic Systems.” Large-Area Chromogenics: Materials and Devices for Transmittance Control: International Society for Optics and Photonics, 030408 (1990)

  5. Hakami, A, Indrakar, S, Krishnegowda, A, Huang, MY, Sahebkar, K, Biswas, PK, et al., “Microencapsulation of Thermochromic Material by Silicon Oxide Nanoparticles.” Trans. Tech. Publ., Key Engineering Materials, pp. 41–48 (2021)

    Google Scholar 

  6. Kulčar, R, Friškovec, M, Hauptman, N, Vesel, A, Gunde, MK, “Colorimetric Properties of Reversible Thermochromic Printing Inks.” Dyes Pigment., 86 (3) 271–277 (2010)

    Article  Google Scholar 

  7. Hu, L, Lyu, S, Fu, F, Huang, J, Wang, S, “Preparation and Properties of Multifunctional Thermochromic Energy-Storage Wood Materials.” J. Mater. Sci., 51 (5) 2716–2726. https://doi.org/10.1007/s10853-015-9585-9 (2016)

    Article  CAS  Google Scholar 

  8. Cui, Y, Ke, Y, Liu, C, Chen, Z, Wang, N, Zhang, L, et al. “Thermochromic VO2 for Energy-Efficient Smart Windows.” Joule, 2 (9) 1707–1746. https://doi.org/10.1016/j.joule.2018.06.018 (2018)

    Article  CAS  Google Scholar 

  9. Zhang, W, Ji, X, Zeng, C, Chen, K, Yin, Y, Wang, C, “A New Approach for the Preparation of Durable and Reversible Color Changing Polyester Fabrics Using Thermochromic Leuco Dye-Loaded Silica Nanocapsules.” J. Mater. Chem. C., 5 (32) 8169–8178. https://doi.org/10.1039/C7TC02077E (2017)

    Article  CAS  Google Scholar 

  10. Yu, C, Zhang, Y, Cheng, D, Li, X, Huang, Y, Rogers, JA, “All-Elastomeric, Strain-Responsive Thermochromic Color Indicators.” Small, 10 (7) 1266–1271. https://doi.org/10.1002/smll.201302646 (2014)

    Article  CAS  Google Scholar 

  11. Feng, J, Xiong, L, Wang, S, Li, S, Li, Y, Yang, G, “Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsules for Detection of a Wide Temperature Range on the Micro-and Macroscale.” Adv. Func. Mater., 23 (3) 340–345 (2013)

    Article  CAS  Google Scholar 

  12. Seeboth, A, Lötzsch, D, Ruhmann, R, Muehling, O, “Thermochromic Polymers—Function by Design.” Chem. Rev., 114 (5) 3037–3068. https://doi.org/10.1021/cr400462e (2014)

    Article  CAS  Google Scholar 

  13. Zhou, QM, Deng, ZR, Yu, SS, Wang, L, Duan, HB, Zou, Y, et al. “Dual Emissions and Thermochromic Luminescence Behavior of Chloroplumbate Organic-Inorganic Hybrid Crystals.” Eur. J. Inorg. Chem., 2018 (33) 3748–3756 (2018)

    Article  CAS  Google Scholar 

  14. Day, JH, “Thermochromism.” Chem. Rev., 63 (1) 65–80 (1963)

    Article  CAS  Google Scholar 

  15. Day, JH, “Thermochromism of Inorganic Compounds.” Chem. Rev., 68 (6) 649–657 (1968)

    Article  CAS  Google Scholar 

  16. Nassau, K, “The Physics and Chemistry of Color: The 15 Mechanisms.” Sci. Color.,. https://doi.org/10.1016/B978-044451251-2/50008-8 (2003)

    Article  Google Scholar 

  17. Nassau, K, “Physical and Chemical Causes of Colour.” https://www.britannica.com/science/color (2020). Accessed 07 Oct 2020

  18. Mastrotheodoros, G, Beltsios, K, Zacharias, N, “Assessment of the Production of Antiquity Pigments Through Experimental Treatment of Ochres and Other Iron Based Precursors.” Mediterr. Archaeol. Archaeom., 10 (1) 37–59 (2010)

    Google Scholar 

  19. Peighambardoust, NS, Asl, SK, Mohammadpour, R, Asl, SK, “Band-Gap Narrowing and Electrochemical Properties in N-doped and Reduced Anodic TiO2 Nanotube Arrays.” Electrochimica Acta., 270 245–255 (2018)

    Article  CAS  Google Scholar 

  20. Rahman, F, “Zinc Oxide Light-Emitting Diodes: A Review.” Opt. Eng., 58 (1) 010901 (2019)

    Article  CAS  Google Scholar 

  21. Soofivand, F, Salavati-Niasari, M, “‘Ag2HgI4’ A Thermochromic Compound with Superionic Conducting Properties: Synthesis, Characterization and Investigation of Graphene-Based Nanocomposites.” J. Mol. Liq., 252 112–120 (2018)

    Article  CAS  Google Scholar 

  22. Yousefi, SR, Sobhani, A, Salavati-Niasari, M, “A New Nanocomposite Superionic System (CdHgI4/HgI2): Synthesis, Characterization and Experimental Investigation.” Adv. Powder Technol., 28 (4) 1258–1262 (2017)

    Article  CAS  Google Scholar 

  23. Ahmad, A, “Phase Transition Study in a [Cu2HgI4: 0·xAgI] Mixed Composite System.” Bull. Mater. Sci., 33 (4) 419–425 (2010)

    Article  Google Scholar 

  24. Willett, RD, Haugen, JA, Lebsack, J, Morrey, J, “Thermochromism in Copper(II) Chlorides. Coordination Geometry Changes in Tetrachlorocuprate(2-)anions.” Inorg. Chem., 13 (10) 2510–2513. https://doi.org/10.1021/ic50140a040 (1974)

    Article  CAS  Google Scholar 

  25. Xie, D, Xu, J, Cheng, H, Wang, N, Zhou, Q, “The Role Played by Amine and Ethyl Group in the Reversible Thermochromic Process of [(C2H5)2NH2]2CuCl4 Probing by FTIR and 2D-COS Analysis.” J. Molecul. Struct., 1161 267–272 (2018)

    Article  CAS  Google Scholar 

  26. Osborne, SJ, Wellens, S, Ward, C, Felton, S, Bowman, RM, Binnemans, K, et al. “Thermochromism and Switchable Paramagnetism of Cobalt(II) in Thiocyanate Ionic Liquids.” Dalton Trans., 44 (25) 11286–11289. https://doi.org/10.1039/C5DT01829C (2015)

    Article  CAS  Google Scholar 

  27. Tapuhi, Y, Kalisky, O, Agranat, I, “Thermochromism and Thermal E, Z Isomerizations in Bianthrones.” J. Org. Chem., 44 (12) 1949–1952. https://doi.org/10.1021/jo01326a012 (1979)

    Article  CAS  Google Scholar 

  28. Agranat, I, Tapuhi, Y, “Dynamic Stereochemistry in Overcrowded Ethylenes. Conformational Behavior of Bianthrones.” J. Org. Chem., 44 (12) 1941–1948 (1979)

    Article  CAS  Google Scholar 

  29. Seiler, VK, Tumanov, N, Robeyns, K, Wouters, J, Champagne, B, Leyssens, T, “A Structural Analysis of Spiropyran and Spirooxazine Compounds and Their Polymorphs.” Crystals, 7 (3) 84. https://doi.org/10.3390/cryst7030084 (2017)

    Article  CAS  Google Scholar 

  30. di Nunzio, MR, Gentili, PL, Romani, A, Favaro, G, “Photochromism and Thermochromism of Some Spirooxazines and Naphthopyrans in the Solid State and in Polymeric Film.” J. Phys. Chem. C., 114 (13) 6123–6131. https://doi.org/10.1021/jp9109833 (2010)

    Article  CAS  Google Scholar 

  31. Xia, H, Xie, K, Zou, G, “Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.” Mol. (Basel, Switzerland), 22 (12) 2236. https://doi.org/10.3390/molecules22122236 (2017)

    Article  CAS  Google Scholar 

  32. Berkovic, G, Krongauz, V, Weiss, V, “Spiropyrans and Spirooxazines for Memories and Switches.” Chem. Rev., 100 (5) 1741–1754 (2000)

    Article  CAS  Google Scholar 

  33. Sage, I, “Thermochromic Liquid Crystals.” Liq. Cryst., 38 (11–12) 1551–1561 (2011)

    Article  CAS  Google Scholar 

  34. Megaw, HD, “Temperature Changes in the Crystal Structure of Barium Titanium Oxide.” Proc. R. Soc. London Ser. A Math. Phys. Sci., 189 (1017) 261–283 (1947)

    CAS  Google Scholar 

  35. Bourque, AN, White, MA, “Control of Thermochromic Behaviour in Crystal Violet Lactone (CVL)/Alkyl Gallate/Alcohol Ternary Mixtures.” Canadian J. Chem., 93 (1) 22–31. https://doi.org/10.1139/cjc-2014-0251 (2014)

    Article  CAS  Google Scholar 

  36. Granqvist, CG, “Transparent Conductors as Solar Energy Materials: A Panoramic Review.” Solar Energy Mater. Solar Cells., 91 (17) 1529–1598. https://doi.org/10.1016/j.solmat.2007.04.031 (2007)

    Article  CAS  Google Scholar 

  37. Li, S-Y, Niklasson, GA, Granqvist, CG, “Nanothermochromics With VO2-Based Core-Shell Structures: Calculated Luminous and Solar Optical Properties.” J. Appl. Phys., 109 (11) 113515. https://doi.org/10.1063/1.3592350 (2011)

    Article  CAS  Google Scholar 

  38. Raditoiu, A, Raditoiu, V, Nicolae, CA, Raduly, MF, Amariutei, V, Wagner, LE, “Optical and Structural Dynamical Behavior of Crystal Violet Lactone – Phenolphthalein Binary Thermochromic Systems.” Dyes Pigments., 134 69–76. https://doi.org/10.1016/j.dyepig.2016.06.046 (2016)

    Article  CAS  Google Scholar 

  39. Seeboth, A, Ruhmann, R, Mühling, O, “Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control.” Mater. (Basel, Switzerland), 3 (12) 5143–5168. https://doi.org/10.3390/ma3125143 (2010)

    Article  CAS  Google Scholar 

  40. Mehta, S, Kushwaha, A, Kisannagar, RR, Gupta, D, “Fabrication of a Reversible Thermochromism Based Temperature Sensor Using an Organic–Inorganic Composite System.” RSC Adv., 10 (36) 21270–21276 (2020)

    Article  CAS  Google Scholar 

  41. Yang, J, Sweeney, D, “Infrared Holography Using The Thermochromic Material Cu2HgI4.” Appl. Opt., 18 (14) 2398–2406 (1979)

    Article  CAS  Google Scholar 

  42. Nguyen, DK, Lee, H, Kim, I-T, “Synthesis and Thermochromic Properties of Cr-doped Al2O3 for a Reversible Thermochromic Sensor.” Materials, 10 (5) 476 (2017)

    Article  Google Scholar 

  43. Ji, Y, Mattsson, A, Niklasson, GA, Granqvist, CG, Österlund, L, “Synergistic TiO2/VO2 Window Coating With Thermochromism, Enhanced Luminous Transmittance, and Photocatalytic Activity.” Joule, 3 (10) 2457–2471 (2019)

    Article  CAS  Google Scholar 

  44. Kim C-Y, Slusar T, Cho J, Kim H-T, “Mott Switching and Structural Transition in the Metal Phase of VO2 Nanodomain.” ACS Appl. Electr. Mater.

  45. Xu, F, Cao, X, Luo, H, Jin, P, “Recent Advances in VO 2-Based Thermochromic Composites for Smart Windows.” J. Mater. Chem. C., 6 (8) 1903–1919 (2018)

    Article  CAS  Google Scholar 

  46. Batista, C, Teixeira, V, “VO2-Based Thermochromic Thin Films for Energy Efficient Windows.”

  47. Xi, WS, Tang, H, Liu, YY, Liu, CY, Gao, Y, Cao, A, et al. “Cytotoxicity of Vanadium Oxide Nanoparticles and Titanium Dioxide-Coated Vanadium Oxide Nanoparticles to Human Lung Cells.” J. Appl. Toxicol., 40 (5) 567–577 (2020)

    Article  CAS  Google Scholar 

  48. Wu, D, Su, Q, Li, Y, Zhang, C, Qin, X, Liu, Y-Y, et al. “Toxicity Assessment and Mechanistic Investigation of Engineered Monoclinic VO2 Nanoparticles.” Nanoscale, 10 (20) 9736–9746 (2018)

    Article  CAS  Google Scholar 

  49. Ahmed, SA, Okasha, RM, Khairou, KS, Afifi, TH, Mohamed, A-AH, Abd-El-Aziz, AS, “Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment.” Polymers, 9 (11) 630. https://doi.org/10.3390/polym9110630 (2017)

    Article  CAS  Google Scholar 

  50. Panák, O, Držková, M, Kaplanová, M, Novak, U, Klanjšek, Gunde M, “The Relation Between Colour and Structural Changes in Thermochromic Systems Comprising Crystal Violet Lactone, Bisphenol A, and Tetradecanol.” Dyes Pigments, 136 382–389. https://doi.org/10.1016/j.dyepig.2016.08.050 (2017)

    Article  CAS  Google Scholar 

  51. Zhu, CF, Wu, AB, “Studies on the Synthesis and Thermochromic Properties of Crystal Violet Lactone and Its Reversible Thermochromic Complexes.” Thermochimica Acta, 425 (1) 7–12. https://doi.org/10.1016/j.tca.2003.08.001 (2005)

    Article  CAS  Google Scholar 

  52. Gavara, R, Laia, CAT, Parola, AJ, Pina, F, “Formation of a leuco Spirolactone from 4-(2-Carboxyphenyl)-7-diethylamino-4′-dimethylamino-1-benzopyrylium: Design of a Phase-Change Thermochromic System Base on a Flavylium Dye.” Chem. Eur. J., 16 (26) 7760–7766. https://doi.org/10.1002/chem.200903482 (2010)

    Article  CAS  Google Scholar 

  53. Kim, IJ, Manivannan, R, Son, YA, “Thermally Reversible Fluorans: Synthesis, Thermochromic Properties and Real Time Application.” J. Nanosci. Nanotechnol., 18 (5) 3299–3305. https://doi.org/10.1166/jnn.2018.14705 (2017)

    Article  CAS  Google Scholar 

  54. Kortekaas, L, Browne, WR, “The Evolution of Spiropyran: Fundamentals and Progress of an Extraordinarily Versatile Photochrome.” Chem. Soc. Rev., 48 (12) 3406–3424. https://doi.org/10.1039/C9CS00203K (2019)

    Article  CAS  Google Scholar 

  55. Li, K, Li, Y, Tao, J, Liu, L, Wang, L, Hou, H, et al. “Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: A Reversible Photochromic Material both in Solution and in Solid Matrix.” Sci. Rep., 5 (1) 14467. https://doi.org/10.1038/srep14467 (2015)

    Article  CAS  Google Scholar 

  56. Tipikin, D, “Mechanochromism of Organic Compounds by the Example of Spiropyran.” 75 1876-80 (2001)

  57. Raymo, FM, Giordani, S, “Signal Processing at the Molecular Level.” J. Am. Chem. Soc., 123 (19) 4651–4652. https://doi.org/10.1021/ja005699n (2001)

    Article  CAS  Google Scholar 

  58. Minkin, VI, “Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds.” Chem. Rev., 104 (5) 2751–2776. https://doi.org/10.1021/cr020088u (2004)

    Article  CAS  Google Scholar 

  59. Wojtyk, JTC, Wasey, A, Xiao, N-N, Kazmaier, PM, Hoz, S, Yu, C, et al. “Elucidating the Mechanisms of Acidochromic Spiropyran-Merocyanine Interconversion.” J. Phys. Chem. A., 111 (13) 2511–2516. https://doi.org/10.1021/jp068575r (2007)

    Article  CAS  Google Scholar 

  60. Mizutani, T, Takagi, H, Ueno, Y, Horiguchi, T, Yamamura, K, Ogoshi, H, “Hydrogen-Bonding-Based Thermochromic Phenol–Amine Complexes.” J. Phys. Org. Chem., 11 (10) 737–742 (1998)

    Article  CAS  Google Scholar 

  61. Seeboth, A, Lötzsch, D, Thermochromic Phenomena in Polymers. http://www.books24x7.com/marc.asp?bookid=28292 (2008). Accessed

  62. Yu, H, Wei, Z, Hao, Y, Liang, Z, Fu, Z, Cai, H, “Reversible Solid-State Thermochromism of a 2D Organic–Inorganic Hybrid Perovskite Structure Based on Iodoplumbate and 2-Aminomethyl-pyridine.” New J. Chem., 41 (18) 9586–9589 (2017)

    Article  Google Scholar 

  63. Ke, S, Li, M, Rao, W, Wei, Z, Cai, H, “A Square-Pyramidal Coordinated Copper(II) Hydrazine Dimeric Complex Showing Reversible Phase Transition, Dielectric Anomaly and Thermochromism.” New J. Chem., 44 (48) 21288–21292 (2020)

    Article  CAS  Google Scholar 

  64. Liu, JC, Liao, WQ, Li, PF, Tang, YY, Chen, XG, Song, XJ, et al. “A Molecular Thermochromic Ferroelectric.” Angewandte Chemie., 132 (9) 3523–3527 (2020)

    Article  Google Scholar 

  65. Mączka, M, Ptak, M, Gągor, A, Stefańska, D, Sieradzki, A, “Layered Lead Iodide of [Methylhydrazinium]2PbI4 With a Reduced Band Gap: Thermochromic Luminescence and Switchable Dielectric Properties Triggered by Structural Phase Transitions.” Chem. Mater., 31 (20) 8563–8575 (2019)

    Article  Google Scholar 

  66. Goodby, JW, “Chirality in Liquid Crystals.” J. Mater. Chem., 1 (3) 307–318. https://doi.org/10.1039/JM9910100307 (1991)

    Article  CAS  Google Scholar 

  67. Finkelmann, H, Rehage, G, “Investigations on Liquid Crystalline Polysiloxanes, 2. Optical Properties of Cholesteric Phases and Influence of the Flexible Spacer on the Mobility of the Mesogenic Groups.” Die Makromolekulare ChemieRapid Commun., 1 (12) 733–740. https://doi.org/10.1002/marc.1980.030011206 (1980)

    Article  CAS  Google Scholar 

  68. Yamagishi, T-A, Sixou, P, “Preparation and Characteristics of Cholesteric Gel From Pentyl Ether of Hydroxypropyl Cellulose.” Polymer., 36 (11) 2315–2317. https://doi.org/10.1016/0032-3861(95)95313-P (1995)

    Article  CAS  Google Scholar 

  69. Hikmet, RAM, Polesso, R, “Patterned Multicolor Switchable Cholesteric Liquid Crystal Gels.” Adv. Mater., 14 (7) 502–504. https://doi.org/10.1002/1521-4095(20020404)14:7%3c502::AID-ADMA502%3e3.0.CO;2-G (2002)

    Article  CAS  Google Scholar 

  70. Park, H, Lee, JS, Choi, H, Ahn, DJ, Kim, JM, “Rational Design of Supramolecular Conjugated Polymers Displaying Unusual Colorimetric Stability upon Thermal Stress.” Adv. Func. Mater., 17 (17) 3447–3455. https://doi.org/10.1002/adfm.200700242 (2007)

    Article  CAS  Google Scholar 

  71. Lam, JWY, Luo, J, Dong, Y, Cheuk, KKL, Tang, BZ, “Functional Polyacetylenes: Synthesis, Thermal Stability, Liquid Crystallinity, and Light Emission of Polypropiolates.” Macromolecules, 35 (22) 8288–8299. https://doi.org/10.1021/ma021011a (2002)

    Article  CAS  Google Scholar 

  72. Lam, JWY, Tang, BZ, “Functional Polyacetylenes.” Acc. Chem. Res., 38 (9) 745–754. https://doi.org/10.1021/ar040012f (2005)

    Article  CAS  Google Scholar 

  73. Chen, X, Yoon, J, “A Thermally Reversible Temperature Sensor Based on Polydiacetylene: Synthesis and Thermochromic Properties.” Dyes Pigments, 89 (3) 194–198. https://doi.org/10.1016/j.dyepig.2009.12.015 (2011)

    Article  CAS  Google Scholar 

  74. Wang, H, Han, S, Hu, Y, Qi, Z, Hu, C, “Polydiacetylene-Based Periodic Mesoporous Organosilicas with Colorimetric Reversibility Under Multiple Stimuli.” Colloids Surf. A Physicochem. Eng. Aspects, 517 84–95. https://doi.org/10.1016/j.colsurfa.2017.01.006 (2017)

    Article  CAS  Google Scholar 

  75. Miller, RD, Wallraff, GM, Baier, M, Cotts, PM, Shukla, P, Russell, TP, et al. “The Solution and Solid-State Thermochromism of Unsymmetrically Substituted Polysilanes.” J. Inorg. Organometallic Polym., 1 (4) 505–530. https://doi.org/10.1007/BF00683514 (1991)

    Article  CAS  Google Scholar 

  76. Sanji, T, Sakamoto, K, Sakurai, H, Ono, K, “A Statistical Model for the Cooperative Thermochromic Transition of Polysilanes.” Macromolecules, 32 (11) 3788–3794. https://doi.org/10.1021/ma981466t (1999)

    Article  CAS  Google Scholar 

  77. Lucht, B, Euler, W, Gregory, O, “Investigation of the Thermochromic Properties of Polythiophenes in Host Polymers.” Polym. Prep., 43 (1) 59–60 (2002)

    CAS  Google Scholar 

  78. Zhao, X, “Synthesis, Characterization and Structure Dependence of Thermochromism of Polythiophene Derivatives.” J. Mater. Sci., 40 (13) 3423–3428. https://doi.org/10.1007/s10853-005-2849-z (2005)

    Article  CAS  Google Scholar 

  79. Leger, JM, Holt, AL, Carter, SA, “Reversible Thermochromic Effects in Poly(phenylene vinylene)-Based Polymers.” Appl. Phys. Lett., 88 (11) 111901. https://doi.org/10.1063/1.2183360 (2006)

    Article  CAS  Google Scholar 

  80. Wang, C-C, Gao, Y, Shreve, AP, Zhong, C, Wang, L, Mudalige, K, et al. “Thermochromism of a Poly(phenylene vinylene): Untangling the Roles of Polymer Aggregate and Chain Conformation.” J. Phys. Chem. B, 113 (50) 16110–16117. https://doi.org/10.1021/jp906645d (2009)

    Article  CAS  Google Scholar 

  81. Naumov, P, Ishizawa, N, Wang, J, Pejov, L, Pumera, M, Lee, SC, “On the Origin of the Solid-State Thermochromism and Thermal Fatigue of Polycyclic Overcrowded Enes.” J. Phys. Chem. A, 115 (30) 8563–8570. https://doi.org/10.1021/jp2040339 (2011)

    Article  CAS  Google Scholar 

  82. MacLaren, DC, White, MA, “Design Rules for Reversible Thermochromic Mixtures.” J. Mater. Sci., 40 (3) 669–676. https://doi.org/10.1007/s10853-005-6305-x (2005)

    Article  CAS  Google Scholar 

  83. Aklujkar, PS, Kandasubramanian, B, “A Review of Microencapsulated Thermochromic Coatings for Sustainable Building Applications.” J. Coat. Technol. Res., 18 19–37 (2021)

  84. Ohkawa, S, Yang, F, Kawabata, K, Goto, H, “Synthesis of Polymers From Chiral Monomers in Chiral Liquid Crystals.” J. Appl. Polym. Sci., 128 (6) 3586–3591. https://doi.org/10.1002/app.38561 (2013)

    Article  CAS  Google Scholar 

  85. Duan, H-B, Yu, S-S, Liu, S-X, Zhang, H, “An Inorganic–Organic Hybrid Crystal with a Two-Step Dielectric Response and Thermochromic Luminescence.” Dalton Trans., 46 (7) 2220–2227. https://doi.org/10.1039/C6DT03691K (2017)

    Article  CAS  Google Scholar 

  86. Traiphol, N, Rungruangviriya, N, Potai, R, Traiphol, R, “Stable Polydiacetylene/ZnO Nanocomposites with Two-Steps Reversible and Irreversible Thermochromism: The Influence of Strong Surface Anchoring.” J. Colloid Interface Sci., 356 (2) 481–489. https://doi.org/10.1016/j.jcis.2011.01.028 (2011)

    Article  CAS  Google Scholar 

  87. Chanakul, A, Traiphol, N, Traiphol, R, “Controlling the Reversible Thermochromism of Polydiacetylene/Zinc Oxide Nanocomposites by Varying Alkyl Chain Length.” J. Colloid Interface Sci., 389 (1) 106–114. https://doi.org/10.1016/j.jcis.2012.08.066 (2013)

    Article  CAS  Google Scholar 

  88. Gadžurić, S, Vraneš, M, Dožić, S, “Thermochromic Cobalt(II) Chloro-Complexes in Different Media: Possible Application for Auto-Regulated Solar Protection.” Solar Energy Mater. Solar Cells., 105 309–316. https://doi.org/10.1016/j.solmat.2012.06.035 (2012)

    Article  CAS  Google Scholar 

  89. Yokoyama, T, Masuhara, A, Onodera, T, Kasai, H, Oikawa, H, “Development of Fabrication Process for Ag/Polydiacetylene (Core/Shell) Hybridized Nanocrystals.” Syn. Metals, 159 (9) 897–899. https://doi.org/10.1016/j.synthmet.2009.01.058 (2009)

    Article  CAS  Google Scholar 

  90. Vishwakarma, AK, Kumari, R, Ghalsasi, PS, Arulsamy, N, “Crystal Structure, Thermochromic and Magnetic Properties of Organic-Inorganic Hybrid Compound: (C7H7N2S)2CuCl4.” J. Molecul. Struct., 1141 93–98. https://doi.org/10.1016/j.molstruc.2017.03.076 (2017)

    Article  CAS  Google Scholar 

  91. Usseglio, S, Damin, A, Scarano, D, Bordiga, S, Zecchina, A, Lamberti, C, “((I2)n Encapsulation Inside TiO2: A Way To Tune Photoactivity in the Visible Region.” J. Am. Chem. Soc., 129 (10) 2822–2828. https://doi.org/10.1021/ja066083m (2007)

    Article  CAS  Google Scholar 

  92. Nagamine, S, Sasaoka, E, “Synthesis of Nanostructured Titania Templated by Anionic Surfactant in Acidic Conditions.” J. Porous Mater., 9 (3) 167–173. https://doi.org/10.1023/A:1020966016542 (2002)

    Article  CAS  Google Scholar 

  93. Zielińska, A, Kowalska, E, Sobczak, JW, Łącka, I, Gazda, M, Ohtani, B, et al. “Silver-Doped TiO2 Prepared by Microemulsion Method: Surface Properties, Bio- and Photoactivity.” Sep. Purification Technol., 72 (3) 309–318. https://doi.org/10.1016/j.seppur.2010.03.002 (2010)

    Article  CAS  Google Scholar 

  94. Li, X, Zheng, W, He, G, Zhao, R, Liu, D, “Morphology Control of TiO2 Nanoparticle in Microemulsion and Its Photocatalytic Property.” ACS Sustainable Chem. Eng., 2 (2) 288–295. https://doi.org/10.1021/sc400328u (2014)

    Article  CAS  Google Scholar 

  95. Arami, H, Mazloumi, M, Khalifehzadeh, R, Sadrnezhaad, SK, “Sonochemical Preparation of TiO2 Nanoparticles.” Mater. Lett., 61 (23) 4559–4561. https://doi.org/10.1016/j.matlet.2007.02.051 (2007)

    Article  CAS  Google Scholar 

  96. Guo, J, Zhu, S, Chen, Z, Li, Y, Yu, Z, Liu, Q, et al. “Sonochemical Synthesis of TiO2 Nanoparticles on Graphene for Use as Photocatalyst.” Ultrason. Sonochem., 18 (5) 1082–1090. https://doi.org/10.1016/j.ultsonch.2011.03.021 (2011)

    Article  CAS  Google Scholar 

  97. Yang, J, Peterlik, H, Lomoschitz, M, Schubert, U, “Preparation of Mesoporous Titania by Surfactant-Assisted Sol–Gel Processing of Acetaldoxime-Modified Titanium Alkoxides.” J. Non-Cryst. Solids, 356 (25) 1217–1227. https://doi.org/10.1016/j.jnoncrysol.2010.04.035 (2010)

    Article  CAS  Google Scholar 

  98. Macwan, DP, Dave, PN, Chaturvedi, S, “A Review on Nano-TiO2 Sol–Gel Type Syntheses and its Applications.” J. Mater. Sci., 46 (11) 3669–3686. https://doi.org/10.1007/s10853-011-5378-y (2011)

    Article  CAS  Google Scholar 

  99. Zhao, Z, Zhang, L, Dai, H, Du, Y, Meng, X, Zhang, R, et al. “Surfactant-Assisted Solvo- or Hydrothermal Fabrication and Characterization of High-Surface-Area Porous Calcium Carbonate with Multiple Morphologies.” Micropor. Mesopor. Mater., 138 (1) 191–199. https://doi.org/10.1016/j.micromeso.2010.09.006 (2011)

    Article  CAS  Google Scholar 

  100. Gao, R, Jiao, Z, Wang, Y, Xu, L, Xia, S, Zhang, H, “Eco-Friendly Synthesis of Rutile TiO2 Nanostructures with Controlled Morphology for Efficient Lithium-Ion Batteries.” Chem. Eng. J., 304 156–164. https://doi.org/10.1016/j.cej.2016.06.051 (2016)

    Article  CAS  Google Scholar 

  101. Yang, L, Wang, C, Liu, Z, Liu, X, Song, Y, Feng, X, et al. “Functionalizing Slag Wool Fibers with Photocatalytic Activity by Anatase TiO2 and CTAB Modification.” Ceram. Int., 44 (6) 5842–5847. https://doi.org/10.1016/j.ceramint.2017.11.036 (2018)

    Article  CAS  Google Scholar 

  102. Chai, L-y, Yu, Y-f, Zhang, G, Peng, B, Wei, S-w, “Effect of Surfactants on Preparation of Nanometer TiO2 by Pyrohydrolysis.” Trans. Nonferr. Metals Soc. China., 17 (1) 176–180. https://doi.org/10.1016/S1003-6326(07)60068-5 (2007)

    Article  CAS  Google Scholar 

  103. Saiwan, C, Krathong, S, Anukulprasert, T, O’rear, III, EA, “Nano-Titanium Dioxide Synthesis in AOT Microemulsion System with Salinity Scan.” J. Chem. Eng. Japan, 37 (2) 279-85 https://doi.org/10.1252/jcej.37.279(2004)

  104. Mitra, A, Bhaumik, A, Paul, BK, “Synthesis and Characterization of Mesoporous Titanium Dioxide Using Self-Assembly of Sodium Dodecyl Sulfate and Benzyl Alcohol Systems as Templates.” Micropor. Mesopor. Mater., 109 (1) 66–72. https://doi.org/10.1016/j.micromeso.2007.04.052 (2008)

    Article  CAS  Google Scholar 

  105. Lekphet, W, Ke, T-C, Su, C, Kathirvel, S, Sireesha, P, Akula, SB, et al. “Morphology Control Studies of TiO2 Microstructures via Surfactant-Assisted Hydrothermal Process for Dye-Sensitized Solar Cell Applications.” Appl. Surf. Sci., 382 15–26. https://doi.org/10.1016/j.apsusc.2016.04.115 (2016)

    Article  CAS  Google Scholar 

  106. Zhang, J, Liu, P, Lu, Z, Xu, G, Wang, X, Qian, L, et al. “One-Step Synthesis of Rutile Nano-TiO2 with Exposed 111 Facets for High Photocatalytic Activity.” J. Alloys Comp., 632 133–139. https://doi.org/10.1016/j.jallcom.2015.01.170 (2015)

    Article  CAS  Google Scholar 

  107. Yuenyongsuwan, J, Nithiyakorn, N, Sabkird, P, O’Rear, EA, Pongprayoon, T, “Surfactant Effect On Phase-Controlled Synthesis and Photocatalyst Property of TiO2 Nanoparticles.” Mater. Chem. Phys., 214 330–336. https://doi.org/10.1016/j.matchemphys.2018.04.111 (2018)

    Article  CAS  Google Scholar 

  108. Hakami, A, Srinivasan, S, Marildi, H, Biswas, PK, Wallen, SL, Stefanakos, EK, “Effects of Multilayer Thin Film Coatings on Different Thermochromic Materials for Thermal Storage Applications.” Current Developments in Lens Design and Optical Engineering XXII: International Society for Optics and Photonics. 118140F (2021)

  109. Peng, G, Du, R, Peng, Q, Wu, S, Yu, C, “A Surfactant Free Method for Rutile TiO2 Microspheres-Graphene Oxide Composite and Its Photocatalytic Performance.” Mater. Chem. Phys., 214 34–40. https://doi.org/10.1016/j.matchemphys.2018.04.092 (2018)

    Article  CAS  Google Scholar 

  110. Meng, S, Mansouri, J, Ye, Y, Chen, V, “Effect of Templating Agents on the Properties and Membrane Distillation Performance of TiO2-Coated PVDF Membranes.” J. Membr. Sci., 450 48–59. https://doi.org/10.1016/j.memsci.2013.08.036 (2014)

    Article  CAS  Google Scholar 

  111. Della-Casa, C, Fraleoni, A, Costa-Bizzarri, P, Lanzi, M, “New 3-Alkylthiophene Copolymers Functionalized with a NLO Chromophore.” Synth. Metals, 124 (2) 467–470. https://doi.org/10.1016/S0379-6779(01)00401-5 (2001)

    Article  CAS  Google Scholar 

  112. Gonçalves, VC, Costa, LMM, Cardoso, MR, Mendonca, CR, Balogh, DT, “Synthesis and Characterization of Copolymers of Alkyl- and Azo-thiophenes: Chromic Properties and Photoinduced Birefringence.” J. Appl. Polym. Sci., 114 (2) 680–687. https://doi.org/10.1002/app.30575 (2009)

    Article  CAS  Google Scholar 

  113. Morales-Espinoza, EG, Aguilar-Ortíz, E, Vázquez-Arce, A, Rodríguez-Alba, E, Vázquez-Torres, H, Rivera, E, “Synthesis and Characterization of Novel Luminescent Polythiophenes Containing Pyrene Units and Oligo(ethylene glycol) Spacers: Thermal and Optical Properties.” Synth. Metals., 199 223–231. https://doi.org/10.1016/j.synthmet.2014.11.038 (2015)

    Article  CAS  Google Scholar 

  114. Morales-Espinoza, EG, Castrellón-Uribe, J, Fuentes-Pérez, M, Nicho, ME, “Synthesis and Characterization of Thermochromic Thiophene Copolymers Containing Pyrene Groups.” Mater. Today Commun., 24 101166. https://doi.org/10.1016/j.mtcomm.2020.101166 (2020)

    Article  CAS  Google Scholar 

  115. Hakami, A, Indrakar, S, Krishnegowda, A, Biswas, PK, Stefanakos, E, Srinivasan, S, “Microencapsulation of the As-Synthesized and Off-the-Shelf Thermochromic Dyes by Nanosized SiO2 Thermal Energy Savings Applications.” Int. J. Mater. Sci. Eng. (2020)

  116. Kahani, SA, Abdevali, F, “Mechanochemical Synthesis and Characterization of a Nickel(II) Complex as a Reversible Thermochromic Nanostructure.” RSC Adv., 6 (6) 5116–5122. https://doi.org/10.1039/C5RA22606F (2016)

    Article  CAS  Google Scholar 

  117. Mapazi, O, Matabola, PK, Moutloali, RM, Ngila, CJ, “A Urea-Modified Polydiacetylene-Based High Temperature Reversible Thermochromic Sensor: Characterisation and Evaluation of Properties as a Function of Temperature.” Sens. Actuat. B Chem., 252 671–679. https://doi.org/10.1016/j.snb.2017.05.095 (2017)

    Article  CAS  Google Scholar 

  118. Zhu, S, Chen, Y, Sun, J, Yang, Y, Yue, C, “Synthesis, Characterization, Thermochromism, and Photochromism of Aromatic Aldehyde Hydrazone Derivatives.” J. Chem., 2016 8460462. https://doi.org/10.1155/2016/8460462 (2016)

    Article  CAS  Google Scholar 

  119. Mehta, L, Wadgaonkar, K, Suryawanshi, M, Jagtap, R, “Solvent-Free Microwave-Assisted Synthesis and Characterization of Polybenzoxazine as a Thermochromic Material for Smart Coatings.” Colloid Polym. Sci., 297 (5) 795–798. https://doi.org/10.1007/s00396-019-04491-9 (2019)

    Article  CAS  Google Scholar 

  120. Peng, G, Dou, G, Hu, Y, Sun, Y, Chen, Z, “Phase Change Material (PCM) Microcapsules for Thermal Energy Storage.” Adv. Polym. Technol., 2020 9490873. https://doi.org/10.1155/2020/9490873 (2020)

    Article  CAS  Google Scholar 

  121. Li, F, Zhao, Y, Wang, S, Han, D, Jiang, L, Song, Y, “Thermochromic Core–Shell Nanofibers Fabricated by Melt Coaxial Electrospinning.” J. Appl. Polym. Sci., 112 (1) 269–274. https://doi.org/10.1002/app.29384 (2009)

    Article  CAS  Google Scholar 

  122. Tözüm, MS, Aksoy, SA, Alkan, C, “Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage.” Fibers Polym., 19 (3) 660–669. https://doi.org/10.1007/s12221-018-7801-3 (2018)

    Article  CAS  Google Scholar 

  123. Zhu, X, Liu, Y, Li, Z, Wang, W, “Thermochromic Microcapsules With Highly Transparent Shells Obtained Through In-situ Polymerization of Urea Formaldehyde Around Thermochromic Cores for Smart Wood Coatings.” Sci. Rep., 8 (1) 4015. https://doi.org/10.1038/s41598-018-22445-z (2018)

    Article  CAS  Google Scholar 

  124. Umair, MM, Zhang, Y, Iqbal, K, Zhang, S, Tang, B, “Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage – A Review.” Appl. Energy., 235 846–873. https://doi.org/10.1016/j.apenergy.2018.11.017 (2019)

    Article  CAS  Google Scholar 

  125. Campardelli, R, Della Porta, G, Gomez, V, Irusta, S, Reverchon, E, Santamaria, J, “Encapsulation of Titanium Dioxide Nanoparticles in PLA Microspheres Using Supercritical Emulsion Extraction to Produce Bactericidal Nanocomposites.” J. Nanoparticle Res., 15 (10) 1987. https://doi.org/10.1007/s11051-013-1987-5 (2013)

    Article  CAS  Google Scholar 

  126. Wu, B, Shi, L, Zhang, Q, Wang, W-J, “Microencapsulation of 1-Hexadecanol as a Phase Change Material With Reversible Thermochromic Properties.” RSC Adv., 7 (67) 42129–42137. https://doi.org/10.1039/C7RA06764J (2017)

    Article  CAS  Google Scholar 

  127. Wu, S, Yuan, L, Gu, A, Zhang, Y, Liang, G, “Synthesis and Characterization of Novel Epoxy Resins-Filled Microcapsules with Organic/Inorganic Hybrid Shell for the Self-Healing of High Performance Resins.” Polym. Adv. Technol., 27 (12) 1544–1556. https://doi.org/10.1002/pat.3829 (2016)

    Article  CAS  Google Scholar 

  128. Yi, S, Sun, S, Deng, Y, Feng, S, “Preparation of Composite Thermochromic and Phase-Change Materials by the Sol–Gel Method and Its Application in Textiles.” J. Textile Instit., 106 (10) 1071–1077. https://doi.org/10.1080/00405000.2014.965501 (2015)

    Article  CAS  Google Scholar 

  129. Arshad, A, Jabbal, M, Yan, Y, Darkwa, J, “The Micro-/Nano-PCMs for Thermal Energy Storage Systems: A State of Art Review.” Int. J. Energy Res., 43 (11) 5572–5620. https://doi.org/10.1002/er.4550 (2019)

    Article  CAS  Google Scholar 

  130. Zhang, Y, Wang, X, Wu, D, “Design and Fabrication of Dual-Functional Microcapsules Containing Phase Change Material Core and Zirconium Oxide Shell with Fluorescent Characteristics.” Solar Energy Mater. Solar Cells., 133 56–68. https://doi.org/10.1016/j.solmat.2014.10.035 (2015)

    Article  CAS  Google Scholar 

  131. Chang, T, Cao, X, Li, N, Long, S, Zhu, Y, Huang, J, et al. “Mitigating Deterioration of Vanadium Dioxide Thermochromic Films by Interfacial Encapsulation.” Matter, 1 (3) 734–744. https://doi.org/10.1016/j.matt.2019.04.004 (2019)

    Article  CAS  Google Scholar 

  132. Latthe, SS, Liu, S, Terashima, C, Nakata, K, Fujishima, A, “Transparent, Adherent, and Photocatalytic SiO2-TiO2 Coatings on Polycarbonate for Self-Cleaning Applications.” Coatings, 4 (3) 497–507 (2014)

    Article  Google Scholar 

  133. Shahnooshi, M, Eshaghi, A, Aghaei, AA, “Transparent Anti-Fogging and Anti-Scratch SiO2/SiO2–TiO2 Thin Film on Polycarbonate Substrate.” Mater. Res. Express., 6 (8) 086447 (2019)

    Article  CAS  Google Scholar 

  134. Yuranova, T, Mosteo, R, Bandara, J, Laub, D, Kiwi, J, “Self-Cleaning Cotton Textiles Surfaces Modified by Photoactive SiO2/TiO2 Coating.” J. Molecul. Catal. A. Chem., 244 (1–2) 160–167 (2006)

    Article  CAS  Google Scholar 

  135. Palkovits, R, Althues, H, Rumplecker, A, Tesche, B, Dreier, A, Holle, U, et al. “Polymerization of w/o Microemulsions for the Preparation of Transparent SiO2/PMMA Nanocomposites.” Langmuir, 21 (13) 6048–6053. https://doi.org/10.1021/la050630k (2005)

    Article  CAS  Google Scholar 

  136. Khaled, SM, Sui, R, Charpentier, PA, Rizkalla, AS, “Synthesis of TiO2−PMMA Nanocomposite: Using Methacrylic Acid as a Coupling Agent.” Langmuir, 23 (7) 3988–3995. https://doi.org/10.1021/la062879n (2007)

    Article  CAS  Google Scholar 

  137. Yin, Q, Zhu, Z, Li, W, Guo, M, Wang, Y, Wang, J, et al. “Fabrication and Performance of Composite Microencapsulated Phase Change Materials with Palmitic Acid Ethyl Ester as Core.” Polymershttps://doi.org/10.3390/polym10070726 (2018)

    Article  Google Scholar 

  138. Alva, G, Lin, Y, Liu, L, Fang, G, “Synthesis, Characterization and Applications of Microencapsulated Phase Change Materials in Thermal Energy Storage: A Review.” Energy Build., 144 276–294. https://doi.org/10.1016/j.enbuild.2017.03.063 (2017)

    Article  Google Scholar 

  139. Hawlader, MNA, Uddin, MS, Khin, MM, “Microencapsulated PCM Thermal-Energy Storage System.” Appl. Energy, 74 (1) 195–202. https://doi.org/10.1016/S0306-2619(02)00146-0 (2003)

    Article  CAS  Google Scholar 

  140. Borreguero, AM, Valverde, JL, Rodríguez, JF, Barber, AH, Cubillo, JJ, Carmona, M, “Synthesis and Characterization of Microcapsules Containing Rubitherm®RT27 Obtained by Spray Drying.” Chem. Eng. J., 166 (1) 384–390. https://doi.org/10.1016/j.cej.2010.10.055 (2011)

    Article  CAS  Google Scholar 

  141. Wang, TY, Huang, J, “Synthesis and Characterization of Microencapsulated Sodium Phosphate Dodecahydrate.” J. Appl. Polym. Sci., 130 (3) 1516–1523. https://doi.org/10.1002/app.39249 (2013)

    Article  CAS  Google Scholar 

  142. Lin, Y, Zhu, C, Alva, G, Fang, G, “Microencapsulation and Thermal Properties of Myristic Acid with Ethyl Cellulose Shell for Thermal Energy Storage.” Appl. Energy., 231 494–501 (2018)

    Article  CAS  Google Scholar 

  143. Suganya, V, Anuradha, V, “Microencapsulation and Nanoencapsulation: A Review.” Int. J. Pharmaceut. Clin. Res., 9 233–239. https://doi.org/10.25258/ijpcr.v9i3.8324 (2017)

    Article  Google Scholar 

  144. Wiatrowski, A, Obstarczyk, A, Mazur, M, Kaczmarek, D, Wojcieszak, D, “Characterization of HfO2 Optical Coatings Deposited by MF Magnetron Sputtering.” Coatings,. https://doi.org/10.3390/coatings9020106 (2019)

    Article  Google Scholar 

  145. Tang, X, Li, W, Zhang, X, Shi, H, “Fabrication and Characterization of Microencapsulated Phase Change Material with Low Supercooling for Thermal Energy Storage.” Energy, 68 160–166. https://doi.org/10.1016/j.energy.2014.03.002 (2014)

    Article  CAS  Google Scholar 

  146. Wang, H, Luo, J, Yang, Y, Zhao, L, Song, G, Tang, G, “Fabrication and Characterization Of Microcapsulated Phase Change Materials with an Additional Function of Thermochromic Performance.” Solar Energy, 139 591–598. https://doi.org/10.1016/j.solener.2016.10.011 (2016)

    Article  CAS  Google Scholar 

  147. Huang, X, Zhu, C, Lin, Y, Fang, G, “Thermal Properties and Applications of Microencapsulated PCM for Thermal Energy Storage: A Review.” Appl. Therm. Eng., 147 841–855. https://doi.org/10.1016/j.applthermaleng.2018.11.007 (2019)

    Article  Google Scholar 

  148. Ma, Y, Zhu, B, Wu, K, “Preparation of Reversible Thermochromic Building Coatings and Their Properties.” J. Coat. Technol., 72 (911) 67–71. https://doi.org/10.1007/BF02720527 (2000)

    Article  CAS  Google Scholar 

  149. Vasei, M, Das, P, Cherfouth, H, Marsan, B, Claverie, JP, “TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation.” Front. Chem.,. https://doi.org/10.3389/fchem.2014.00047 (2014)

    Article  Google Scholar 

  150. Falco, N, Reverchon, E, Della, Porta G, “Continuous Supercritical Emulsions Extraction: Packed Tower Characterization and Application to Poly(lactic-co-glycolic Acid) + Insulin Microspheres Production.” Ind. Eng. Chem. Res., 51 (25) 8616–8623. https://doi.org/10.1021/ie300482n (2012)

    Article  CAS  Google Scholar 

  151. McCann, JT, Marquez, M, Xia, Y, “Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers.” Nano Lett., 6 (12) 2868–2872. https://doi.org/10.1021/nl0620839 (2006)

    Article  CAS  Google Scholar 

  152. Braghirolli, DI, Steffens, D, Pranke, P, “Electrospinning for Regenerative Medicine: A Review of the Main Topics.” Drug Discov. Today, 19 (6) 743–753 (2014)

    Article  CAS  Google Scholar 

  153. Sahebkar, K, Indrakar, S, Srinivasan, S, Thomas, S, Stefanakos, EK, “Electrospun Microfibers with Embedded Leuco Dye-Based Thermochromic Material for Textile Applications.” J. Ind. Textiles. October, 06, 2020 (2020)

  154. Hu, J, Yu, XB, “Adaptive Thermochromic Roof System: Assessment of Performance Under Different Climates.” Energy Build., 192 1–14 (2019)

    Article  Google Scholar 

  155. Kiri, P, Hyett, G, Binions, R, “Solid State Thermochromic Materials.” Adv. Mater. Lett., 1 86–105. https://doi.org/10.5185/amlett.2010.8147 (2010)

    Article  CAS  Google Scholar 

  156. Kana, JK, Ndjaka, J, Ateba, PO, Ngom, B, Manyala, N, Nemraoui, O, et al. “Thermochromic VO2 Thin Films Synthesized by RF-Inverted Cylindrical Magnetron Sputtering.” Appl. Surf. Sci., 254 (13) 3959–3963 (2008)

    Article  CAS  Google Scholar 

  157. Krishna, MG, Debauge, Y, Bhattacharya, A, “X-ray Photoelectron Spectroscopy and Spectral Transmittance Study of Stoichiometry in Sputtered Vanadium Oxide Films.” Thin Solid Films, 312 (1–2) 116–122 (1998)

    Article  CAS  Google Scholar 

  158. Jorgenson, G, Lee, J, “Doped Vanadium Oxide for Optical Switching Films.” Solar Energy Mater., 14 (3–5) 205–214 (1986)

    Article  CAS  Google Scholar 

  159. Wasa, K, Kitabatake, M, Adachi, H, Thin Film Materials Technology: Sputtering of Control Compound Materials. Springer, Berlin (2004)

    Google Scholar 

  160. Borek, M, Qian, F, Nagabushnam, V, Singh, RK, “Pulsed Laser Deposition of Oriented VO2 Thin Films on R-Cut Sapphire Substrates.” Appl. Phys. Lett., 63 (24) 3288–3290. https://doi.org/10.1063/1.110177 (1993)

    Article  CAS  Google Scholar 

  161. Kim, DH, Kwok, HS, “Pulsed Laser Deposition of VO2 Thin Films.” Appl. Phys. Lett., 65 (25) 3188–3190. https://doi.org/10.1063/1.112476 (1994)

    Article  CAS  Google Scholar 

  162. Lu, S, Hou, L, Gan, F, “Preparation and Optical Properties of Phase-Change VO2 Thin Films.” J. Mater. Sci., 28 (8) 2169–2177. https://doi.org/10.1007/BF00367579 (1993)

    Article  CAS  Google Scholar 

  163. Bhaduri, SB, The Physics and Chemistry Of Sol-Gel Processing. Edited by C.J. Brinker and G.W. Scherer San Diego, CA, Academic Press Inc (1990)

  164. Greenberg, CB, “Undoped and Doped VO2 Films Grown from VO(OC3H7)3.” Thin Solid Films., 110 (1) 73–82. https://doi.org/10.1016/0040-6090(83)90175-X (1983)

    Article  CAS  Google Scholar 

  165. Takahashi, Y, Kanamori, M, Hashimoto, H, Moritani, Y, Masuda, Y, “Preparation of VO2 Films by Organometallic Chemical Vapour Deposition and Dip-Coating.” J. Mater. Sci., 24 (1) 192–198. https://doi.org/10.1007/BF00660953 (1989)

    Article  CAS  Google Scholar 

  166. Barreca, D, Armelao, L, Caccavale, F, Di Noto, V, Gregori, A, Rizzi, GA, et al. “Highly Oriented V2O5 Nanocrystalline Thin Films by Plasma-Enhanced Chemical Vapor Deposition.” Chem. Mater., 12 (1) 98–103. https://doi.org/10.1021/cm991095a (2000)

    Article  CAS  Google Scholar 

  167. Martin, P, “Deposition Technologies: An Overview.” Handbook of Deposition Technologies for Films and Coatings. 3 (2010)

  168. Mattox, DM, Handbook of Physical Vapor Deposition (PVD) Processing. William Andrew (2010)

  169. Jackson, TJ, Palmer, SB, “Oxide Superconductor and Magnetic Metal Thin Film Deposition by Pulsed Laser Ablation: A Review.” J. Phys. D. Appl. Phys., 27 (8) 1581–1594. https://doi.org/10.1088/0022-3727/27/8/001 (1994)

    Article  CAS  Google Scholar 

  170. Kanu, SS, Binions, R, “Thin Films for Solar Control Applications.” Proc. R. Soc. A. Math. Phys. Eng. Sci., 466 (2113) 19–44. https://doi.org/10.1098/rspa.2009.0259 (2010)

    Article  CAS  Google Scholar 

  171. Binions, R, Carmalt, C, Parkin, I, “A Comparison of the Gas Sensing Properties of Solid State Metal Oxide Semiconductor Gas Sensors Produced by Atmospheric Pressure Chemical Vapour Deposition and Screen Printing.” Meas. Sci. Technol., 18 190. https://doi.org/10.1088/0957-0233/18/1/024 (2007)

    Article  CAS  Google Scholar 

  172. Choy, KL, “Chemical Vapour Deposition of Coatings.” Prog. Mater. Sci., 48 (2) 57–170. https://doi.org/10.1016/S0079-6425(01)00009-3 (2003)

    Article  CAS  Google Scholar 

  173. Pospsil, J, Nespurek, S, “Photostabilization of Coatings. Mechanisms and Performance.” Prog. Polym. Sci., 25 1261–1335. https://doi.org/10.1016/S0079-6700(00)00029-0 (2000)

    Article  Google Scholar 

  174. Fabiani, C, Pisello, A, Bou-Zeid, E, Yang, J, Cotana, F, “Adaptive Measures for Mitigating Urban Heat Islands: The Potential of Thermochromic Materials to Control Roofing Energy Balance.” Appl. Energy., 247 155–170 (2019)

    Article  Google Scholar 

  175. Pérez, G, Mota-Heredia, C, Sánchez-García, J, Guerrero, A, “Compatibility Between Thermochromic Pigments and Portland Cement-based Materials.” Constr. Build. Mater., 251 119038 (2020)

    Article  Google Scholar 

  176. Rabek, JF, Photodegradation of Polymers: Physical Characteristics and Applications. Springer, Berlin (1996)

    Book  Google Scholar 

  177. Olayan, HB, Hami, HS, Owen, ED, “Photochemical and Thermal Crosslinking of Polymers.” J. Macromol. Sci. Part C, 36 (4) 671–719. https://doi.org/10.1080/15321799608014858 (1996)

    Article  Google Scholar 

  178. Allen, NS, McKellar, JF, Photochemistry of Dyed and Pigmented Polymers. Appl. Sci. Publishers; (1980)

  179. Williams, JG, Polymeric Materials Encyclopedia Edited by Joseph C. Salamone. CRC Press: Boca Raton, FL. 1996. ISBN 0-8493-2470-X. J. Am. Chem. Soc. 120(27) 6848-9 https://doi.org/10.1021/ja985901a(1998)

  180. Florio, JJ, Miller, DJ, Handbook of Coating Additives. Taylor & Francis, Routledge (2004)

    Book  Google Scholar 

  181. Villetti, MA, Crespo, JS, Soldi, MS, Pires, ATN, Borsali, R, Soldi, V, “Thermal Degradation of Natural Polymers.” J. Therm. Anal. Calor., 67 (2) 295–303. https://doi.org/10.1023/A:1013902510952 (2002)

    Article  CAS  Google Scholar 

  182. Li, K, Xu, Y, Liu, Y, Mohideen, MM, He, H, Ramakrishna, S, “Dissipative Particle Dynamics Simulations of Centrifugal Melt Electrospinning.” J. Mater. Sci., 54 (13) 9958–9968 (2019)

    Article  CAS  Google Scholar 

  183. Granqvist, CG, “Electrochromics and Thermochromics: Towards a New Paradigm for Energy Efficient Buildings.” Mater. Today Proc., 3 S2–S11. https://doi.org/10.1016/j.matpr.2016.01.002 (2016)

    Article  Google Scholar 

  184. Granqvist, CG, “Recent Progress in Thermochromics and Electrochromics: A Brief Survey.” Thin Solid Films., 614 90–96. https://doi.org/10.1016/j.tsf.2016.02.029 (2016)

    Article  CAS  Google Scholar 

  185. Chang, T-C, Cao, X, Bao, S-H, Ji, S-D, Luo, H-J, Jin, P, “Review on Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application.” Adv. Manuf., 6 (1) 1–19. https://doi.org/10.1007/s40436-017-0209-2 (2018)

    Article  CAS  Google Scholar 

  186. Rao, NM, “Biomedical Application of Thermochromic Liquid Crystals and Leuco Dyes for Temperature Monitoring in the Extremities.” Kent State University (2016)

  187. Woltman, SJ, Jay, GD, Crawford, GP, “Liquid-Crystal Materials Find a New Order in Biomedical Applications.” Nat. Mater., 6 (12) 929–938. https://doi.org/10.1038/nmat2010 (2007)

    Article  CAS  Google Scholar 

  188. Kambarami, R, Chidede, O, Pereira, N, “ThermoSpot in the Detection of Neonatal Hypothermia.” Ann. Trop. Paediatr., 22 (3) 219–223. https://doi.org/10.1179/027249302125001516 (2002)

    Article  CAS  Google Scholar 

  189. Mole, TB, Kennedy, N, Ndoya, N, Emond, A, “ThermoSpots to Detect Hypothermia in Children With Severe Acute Malnutrition.” PloS One, 7 (9) 45823. https://doi.org/10.1371/journal.pone.0045823 (2012)

    Article  CAS  Google Scholar 

  190. Hu, J, Yu, XB, “Adaptive Building Roof by Coupling Thermochromic Material and Phase Change Material: Energy Performance Under Different Climate Conditions.” Constr. Build. Mater., 262 120481 (2020)

    Article  Google Scholar 

  191. Ćurković, L, Ljubas, D, Šegota, S, Bačić, I, “Photocatalytic Degradation of Lissamine Green B Dye by Using Nanostructured Sol–Gel TiO2 Films.” J. Alloys Comp., 604 309–316. https://doi.org/10.1016/j.jallcom.2014.03.148 (2014)

    Article  CAS  Google Scholar 

  192. Szatmáry, L, Šubrt, J, Kalousek, V, Mosinger, J, Lang, K, “Low-Temperature Deposition of Anatase on Nanofiber Materials for Photocatalytic NOx Removal.” Catal. Today, 230 74–78. https://doi.org/10.1016/j.cattod.2013.09.023 (2014)

    Article  CAS  Google Scholar 

  193. Sakthivel, S, Neppolian, B, Shankar, MV, Arabindoo, B, Palanichamy, M, Murugesan, V, “Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2.” Solar Energy Mater. Solar Cells, 77 (1) 65–82. https://doi.org/10.1016/S0927-0248(02)00255-6 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias K. Stefanakos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakami, A., Srinivasan, S.S., Biswas, P.K. et al. Review on thermochromic materials: development, characterization, and applications. J Coat Technol Res 19, 377–402 (2022). https://doi.org/10.1007/s11998-021-00558-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00558-x

Keywords

Navigation