Skip to main content

Advertisement

Log in

Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Bibliography

  • Acar M, Mettetal JT, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471–475

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3:380–396

    Article  CAS  PubMed  Google Scholar 

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) Gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

  • Bachofen R, Schenk A (1998) Quorum sensing autoinducers: do they play a role in natural microbial habitats? Microbiol Res 153:61–63

    Article  CAS  Google Scholar 

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992) N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Currr Opin Microbiol 2(6):582–587

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular pre-activated products. Biol Bull 143:265–277

    Article  Google Scholar 

  • Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol 193:6576–6585

  • Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lunsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. Nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J, Schulz S, Gram L (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 71:7263–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME, Smith JE, Preskitt LB, Rowley DC, Gerwick L, Gerwick WH (2012) Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 19:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    Article  CAS  PubMed  Google Scholar 

  • Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci U S A 111:4280–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci U S A 109:8259–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  PubMed  Google Scholar 

  • Decho AW, Visscher PT, Ferry J, Kawaguchi T, He L, Przekop KM, Norman RS, Reid RP (2009) Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. Environ Microbiol 11:409–420

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258

    Article  PubMed  Google Scholar 

  • Delong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Funct Ecol:131–139

  • Diggle SP, Crusz SA, Cámara M (2007) Quorum sensing. Curr Biol 17:R907–R910

    Article  CAS  PubMed  Google Scholar 

  • Doberva M, Sanchez-Ferandin S, Toulza E, Lebaron P, Lami R (2015) Diversity of quorum sensing autoinducer synthases in the Global Ocean sampling metagenomic database. Aquat Microb Ecol 74:107–119

    Article  Google Scholar 

  • Dobretsov S, Abed RMM, Al Maskari SMS, Al Sabahi JN, Victor R (2010) Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions. J Appl Phycol 23:983–993

    Article  CAS  Google Scholar 

  • Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ (2011) Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27:893–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

  • Dong YH, Wang LY, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond Ser B Biol Sci 362:1201–1211

    Article  CAS  Google Scholar 

  • Doucette GJ (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3:65–74

    Article  CAS  PubMed  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  CAS  PubMed  Google Scholar 

  • Fandino LB, Riemann L, Steward GF, Long RA, Azam F (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23:119–130

    Article  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao MS, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  CAS  PubMed  Google Scholar 

  • Geng HF, Belas R (2010) Expression of tropodithietic acid biosynthesis is controlled by a novel autoinducer. J Bacteriol 192:4377–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng H, Bruhn JB, Nielsen KF, Gram L, Belas R (2008) Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl Environ Microbiol 74:1535–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class proteobacteria. Appl Environ Microbiol 65:3810–3819

    PubMed  PubMed Central  Google Scholar 

  • Gram L, Grossart HP, Schlingloff A, Kiorboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EM, Aebisher D, Greer A, Bentley R (2008) Computational studies of the tropone natural products, thiotropocin, tropodithietic acid, and troposulfenin. Significance of Thiocarbonyl-enol Tautomerism. J Org Chem 73:280–283

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GH, Luesch H, Yoshida WY, Moore RE, Nagle DG, Biggs J, Park PU, Paul VJ (1999) Tumonoic acids, novel metabolites from a cyanobacterial assemblage of Lyngbya majuscula and Schizothrix calcicola. J Nat Prod 62:464–467

    Article  CAS  PubMed  Google Scholar 

  • Harvey EL, Deering RW, Rowley DC, El Gamal A, Schorn M, Moore BS, Johnson MD, Mincer TJ, Whalen KE (2016) A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front Microbiol 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa Y, Martin JL, Giewat MW, Rooney-Varga JN (2007) Microbial community diversity in the phycosphere of natural populations of the toxic alga, Alexandrium fundyense. Environ Microbiol 9:3108–3121

    Article  CAS  PubMed  Google Scholar 

  • Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  CAS  PubMed  Google Scholar 

  • Hmelo L, Van Mooy BAS (2009) Kinetic constraints on acylated homoserine lactone-based quorum sensing in marine environments. Aquat Microb Ecol 54:127–133

    Article  Google Scholar 

  • Hmelo LR, Mincer TJ, Van Mooy BA (2011) Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments. Environ Microbiol Rep 3:682–688

    Article  CAS  PubMed  Google Scholar 

  • Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D et al (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  CAS  PubMed  Google Scholar 

  • Jatt AN, Tang K, Liu J, Zhang Z, Zhang XH (2015) Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiol Ecol 91:1–13

    Article  PubMed  Google Scholar 

  • Johnson WM, Kido Soule MC, Kujawinski EB (2016) Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME J 10:2304–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 102:309–314

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim YH, Seo YW, Park S (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol Bioprocess 12:308–311

    Article  CAS  Google Scholar 

  • Kuo J-C, Chang Y-H, Chen T-Y, Chen Y-M (2014) Elucidation of anti-Vibrio factors associated with green alga Picochlorum sp. strain S1b. J Appl Phycol 27:257–265

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H (2011) Lyngbyoic acid, a "tagged" fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Mol BioSyst 7:1205–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbate M, Zhu H, Thung L, Bandara R, Larsen MR, Willcox MDP, Givskov M, Rice SA, Kjelleberg S (2007) Quorum-sensing regulation of adhesion in Serratia marcescens MG1 is surface dependent. J Bacteriol 189:2702–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in gram-negative bacteria. Nat Rev Microbiol 2:581–592

    Article  CAS  PubMed  Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711

  • McLean RJ, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154:259-263

    Article  CAS  PubMed  Google Scholar 

  • Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M (2016) Microbiome shifts and the inhibition of quorum sensing by black band disease cyanobacteria. ISME J 10:1204–1216

    Article  CAS  PubMed  Google Scholar 

  • Miller TR, Belas R (2006) Motility is involved in Silicibacter sp TM1040 interaction with dinoflagellates. Environ Microbiol 8:1648–1659

    Article  CAS  PubMed  Google Scholar 

  • Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, Crump BC, Dorrestein PC, Dyhrman ST, Hess NJ et al (2016) Deciphering Ocean carbon in a changing world. Proc Natl Acad Sci U S A 113:3143–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium gamma-proteobacterium. Appl Microbiol Biotechnol 73:684–690

    Article  CAS  PubMed  Google Scholar 

  • Natrah F, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57

    Article  CAS  Google Scholar 

  • Nealson KH (1977) Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol 112:73–79

    Article  CAS  PubMed  Google Scholar 

  • Neumann A, Patzelt D, Wagner-Döbler I, Schulz S (2013) Identification of new N-acylhomoserine lactone signalling compounds of Dinoroseobacter shibae DFL-12 T by overexpression of luxI genes. Chembiochem 14:2355–2361

  • Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR et al (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paerl HW. 1982. Interactions with bacteria. In: Press UoC, (ed) editor. The biology of cyanobacteria. p 441–461.

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  PubMed  Google Scholar 

  • Patzelt D, Wang H, Buchholz I, Rohde M, Grobe L, Pradella S, Neumann A, Schulz S, Heyber S, Munch K et al (2013) You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J 7:2274–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Pohnert G (2011) Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6:e21032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt TG, Fuqua C (2010) What's in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popat R, Cornforth DM, McNally L, Brown SP (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12:20140882

    Article  PubMed  PubMed Central  Google Scholar 

  • Porsby CH, Nielsen KF, Gram L (2008) Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl Environ Microbiol 74:7356–7364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prol Garcia M, D'Alvise P, Rygaard A, Gram L (2014) Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395. J Appl Microbiol 117:1592–1600

    Article  CAS  PubMed  Google Scholar 

  • Puskas A, Greenberg DP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamani S, Bauer WD, Robinson JB, Farrow JM 3rd, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant-Microbe Interact 21:1184–1192

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Teplitski M, Kumar A, Krediet CJ, Sayre RT, Bauer WD (2011) N-acyl homoserine lactone lactonase, AiiA, inactivation of quorum sensing agonists produced by Chlamydomonas reinhardtii (Chlorophyta) and characterization of aiiA transgenic algae. J Phycol 47(5):1219–1227

  • Rao D, Webb JS, Kjelleberg S (2006) Microbial colonization and competition on the marine alga Ulva australis. Appl Environ Microbiol 72:5547–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao D, Webb JS, Holmström C, Case R, Low A, Steinberg P, Kjelleberg S (2007) Low densities of epiphytic bacteria from the marine alga Ulva Australis inhibit settlement of fouling organisms. Appl Environ Microbiol 73:7844–7852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea Pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244

    Article  CAS  PubMed  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    Article  CAS  PubMed  Google Scholar 

  • Rivas MO, Vargas P, Riquelme CE (2010) Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb Ecol 60:628–635

    Article  CAS  PubMed  Google Scholar 

  • Romero M, Diggle SP, Heeb S, Camara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80

  • Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217

    Article  CAS  PubMed  Google Scholar 

  • Rooney-Varga JN, Giewat MW, Savin MC, Sood S, LeGresley M, Martin JL (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49:163–175

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Keller KH, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699

    Article  PubMed  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17:189–195

    Article  CAS  PubMed  Google Scholar 

  • Schulz S (2014) A new bacterial chemical signal: mapping the chemical space used for communication. Chembiochem 15:498–500

    Article  CAS  PubMed  Google Scholar 

  • Seyedsayamdost MR, Carr G, Kolter R, Clardy J (2011a) Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost MR, Case RJ, Kolter R, Clardy J (2011b) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif DI, Gallon J, Smith CJ, Dudley E (2008) Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182

  • Sheridan CC, Steinberg DK, Kling GW (2002) The microbial and metazoan community associated with colonies of Trichodesmium spp.: a quantitative survey. J Plankton Res 24:913–922

    Article  Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Article  Google Scholar 

  • Singh RP (2015) Attenuation of quorum sensing-mediated virulence in gram-negative pathogenic bacteria: implications for the post-antibiotic era. Med Chem Commun 6:259–272

    Article  CAS  Google Scholar 

  • Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1–15

    Article  Google Scholar 

  • Slightom RN, Buchan A (2009) Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl Environ Microbiol 75:6027–6037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

  • Sohn JH, Lee JH, Yi H, Chun J, Bae KS, Ahn TY, Kim SJ (2004) Kordia algicida gen. Nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 54:675–680

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146

  • Thiel V, Brinkhoff T, Dickschat JS, Wickel S, Grunenberg J, Wagner-Döbler I, Simon M, Schulz S (2010) Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade. Org Biomol Chem 8:234–246

    Article  CAS  PubMed  Google Scholar 

  • Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M et al (2012) Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 6:2229–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K (2006) Community structure of the bacteria associated with Nodularia sp. (cyanobacteria) aggregates in the Baltic Sea. Microb Ecol 52:513–522

    Article  CAS  PubMed  Google Scholar 

  • Van Mooy BA, Hmelo LR, Sofen LE, Campagna SR, May AL, Dyhrman ST, Heithoff A, Webb EA, Momper L, Mincer TJ (2012) Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J 6:422–429

    Article  CAS  PubMed  Google Scholar 

  • Wagner-Döbler I, Thiel V, Eberl L, Allgaier M, Bodor A, Meyer S, Ebner S, Hennig A, Pukall R, Schulz S (2005) Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem 6:2195–2206

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Tomasch J, Jarek M, Wagner-Döbler I (2014) A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol 5:311

    PubMed  PubMed Central  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594

    Article  CAS  PubMed  Google Scholar 

  • Wood DW, Pierson LS (1996) The phzI gene of pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53

    Article  CAS  PubMed  Google Scholar 

  • Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H et al (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646

  • Zhai C, Zhang P, Shen F, Zhou C, Liu C (2012) Does Microcystis aeruginosa have quorum sensing? FEMS Microbiol Lett 336:38–44

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99:4638–4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the CNRS for funding this research (grant EC2CO-ROSEOCOM) and Sheree Yau for her help in English grammar and spelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Lami.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolland, J.l., Stien, D., Sanchez-Ferandin, S. et al. Quorum Sensing and Quorum Quenching in the Phycosphere of Phytoplankton: a Case of Chemical Interactions in Ecology. J Chem Ecol 42, 1201–1211 (2016). https://doi.org/10.1007/s10886-016-0791-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0791-y

Keywords

Navigation