Skip to main content
Log in

Interactions of Botryococcus braunii Cultures with Bacterial Biofilms

  • Notes and Short communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Unicellular microalgae generally grow in the presence of bacteria, particularly when they are farmed massively. This study analyzes the bacteria associated with mass culture of Botryococcus braunii: both the planktonic bacteria in the water column and those forming biofilms adhered to the surface of the microalgal cells (∼107–108 culturable cells per gram microalgae). Furthermore, we identified the culturable bacteria forming a biofilm in the microalgal cells by 16S rDNA sequencing. At least eight different culturable species of bacteria were detected in the biofilm and were evaluated for the presence of quorum-sensing signals in these bacteria. Few studies have considered the implications of this phenomenon as regards the interaction between bacteria and microalgae. Production of C4-AHL and C6-AHL were detected in two species, Pseudomonas sp. and Rhizobium sp., which are present in the bacterial biofilm associated with B. braunii. This type of signal was not detected in the planktonic bacteria isolated from the water. We also noted that the bacterium, Rhizobium sp., acted as a probiotic bacterium and significantly encouraged the growth of B. braunii. A direct application of these beneficial bacteria associated with B. braunii could be, to use them like inoculants for large-scale microalgal cultures. They could optimize biomass production by enhancing growth, particularly in this microalga that has a low growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Avendaño-Herrera RE, Riquelme CE (2007) Production of a diatom–bacteria biofilm in a photobioreactor for aquaculture applications. Aquac Eng 36:97–104

    Article  Google Scholar 

  2. Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  3. Bollinger N, Hassett DJ, Iglewski BH, Costerton JW, McDermott JR (2001) Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 183:1990–1996

    Article  CAS  PubMed  Google Scholar 

  4. Cepák V, Lukavsky J (1994) The effect of high irradiances on growth, biosynthetic activities and the ultrastructure of the green alga Botryococcus braunii strain Droop 1950/807-1. Archie fur Hydrobiologie 102:1–17

    Google Scholar 

  5. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 2007(25):294–306

    Article  Google Scholar 

  6. Cohen Z (1999) In: Cohen Z (ed) Chemicals from microalgae, 1st edn. Ben Gurion University of the Negev, Israel, pp 205–253

    Google Scholar 

  7. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  8. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  PubMed  Google Scholar 

  9. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immunol 68:4839–4849

    Article  Google Scholar 

  10. de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288

    Article  PubMed  Google Scholar 

  11. Dovretsov S, Dahms HU, Yili H, Wahl M, Qian PY (2007) The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol 60:177–188

    Article  Google Scholar 

  12. Fukami K, Nishijima T, Ishida Y (1997) Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358:185–191

    Article  Google Scholar 

  13. Givskov M, Nys RD, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    CAS  PubMed  Google Scholar 

  14. Gram L, de Nys R, Maximillien R, Givskov M, Steinberg P, Kjelleberg S (1996) Inhibitory effects of secondary metabolites from the red alga Delisea pulchra on swarming motility of Proteus mirabilis. Appl Environ Microbiol 62:4284–4287

    CAS  PubMed  Google Scholar 

  15. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  16. Kogure K, Simidu U, Taga N (1979) Effect of Skeletonema costatum (Grev) Cleve on the growth of marine bacteria. J Exp Mar Biol Ecol 36:201–215

    Article  Google Scholar 

  17. Latifi A, Winson KM, Foglino M, Bycroft BW, Stewart GSAB, Lazduski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–344

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Qin J (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556

    Article  CAS  Google Scholar 

  19. Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 70:3715–3723

    Article  CAS  PubMed  Google Scholar 

  20. Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A (2002) Quorum sensing in plant associated bacteria. Curr Opin Plant Biol 5:285–290

    Article  CAS  PubMed  Google Scholar 

  21. Luo ZQ, Clemente TE, Farrand SK (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14:98–103

    Article  CAS  PubMed  Google Scholar 

  22. Madigan MT, Martinko JM, Parker J (1993) Brock biology of microorganisms, 8th edn. Prentice Hall, Upper Saddle River, p 07458

    Google Scholar 

  23. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol 143:3703–3711

    Article  CAS  Google Scholar 

  24. Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia. Their roles in aquatic production and biogeochemical cycling. Microbiol Ecol 31:225–247

    Article  Google Scholar 

  25. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  PubMed  Google Scholar 

  26. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  27. Qin J, Li Y (2006) Optimization of the growth environment of Botryococcus braunii strain CHN357. J Freshwater Ecol 21:169–176

    CAS  Google Scholar 

  28. Qin J (2005) Bio-hydrocarbons from algae, impacts of temperature, light and salinity on algae growth. Rural Industries Research and Development Corporation. Australian Government. www.rirdc.gov.au/reports/EFM/05-025.pdf

  29. Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  PubMed  Google Scholar 

  30. Rao AR, Sarada R, Baskaran V, Ravishankar GA (2006) Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J Agric Food Chem 54:4593–4599

    Article  CAS  PubMed  Google Scholar 

  31. Ravn L, Christensen AB, Molin S, Givskov M, Gram L (2001) Methods for identifying and quantifying acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL production kinetics. J Microbiol Meth 44:239–251

    Article  CAS  Google Scholar 

  32. Riquelme CE, Avendaño-Herrera RE (2003) Microalgae and bacteria interaction in the aquatic environment and their potential use in aquaculture. Revista Chilena de Historia Natural 76:725–736

    Article  Google Scholar 

  33. Riquelme CE, Ishida Y (1988) Chemotaxis of bacteria to extracellular products of marine bloom algae. J Gen Appl Microbiol 34:417–423

    Article  CAS  Google Scholar 

  34. Rivas M, Seeger M, Jedlicki E, Holmes DS (2007) Second acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 73:3225–3231

    Article  CAS  PubMed  Google Scholar 

  35. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  36. Sheehan J, Dunahay T, Beneman JR, Roessler P (1998) A look back at the U.S. Department of Energy's Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory, Golden, CO, 80401 NERL/TP-580-24190

  37. Silva F, Riquelme C (2008) Comparisons of the growth of six diatom species between two configurations of tubular photobioreactors. Aquac Eng 38:26–35

    Article  Google Scholar 

  38. Sokal RR, Rohlf J (1995) Biometry: the principles and practice of statistics in biological research. 3rd edition. W. H. Freeman and Co.: New York. 887 pp. ISBN: 0-7167-2411-1

  39. Suminto K, Hirayama K (1997) Application of a growth-promoting bacterium for stable mass culture of three marine microalgae. Hydrobiologia 358:223–230

    Article  Google Scholar 

  40. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GSAB (1997) Quorum sensing in Aeromonas hydrophyla and Aeromonas salmonicida identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281

    CAS  PubMed  Google Scholar 

  41. Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146

    Article  CAS  PubMed  Google Scholar 

  42. Thompson AS, Rhodes JC, Pettman I (1988) Culture collection of algae and protozoa catalogue of strains. 164 pp. In: Natural environment research and council. England 5th edit

  43. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  PubMed  Google Scholar 

  44. Yoshinaga I, Kawai T, Ishida Y (1997) Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Japan. Fish Sci 63:94–98

    CAS  Google Scholar 

  45. Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondef Grant no. D06I1021, Innova Grant no 07CN13PBT-139 and CICITEM. We thank Stephen Winans for providing cultures of A. tumefaciens NTL4 and KYC55 and Juan González for providing S. meliloti Rm41 and Rm41 SinI−. The valuable comment of reviewers is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella O. Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, M.O., Vargas, P. & Riquelme, C.E. Interactions of Botryococcus braunii Cultures with Bacterial Biofilms. Microb Ecol 60, 628–635 (2010). https://doi.org/10.1007/s00248-010-9686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9686-6

Keywords

Navigation