Skip to main content
Log in

Aphid Feeding Activates Expression of a Transcriptome of Oxylipin-based Defense Signals in Wheat Involved in Resistance to Herbivory

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Damage by the Russian wheat aphid (RWA), Diuraphis noxia, significantly reduces wheat and barley yields worldwide. In compatible interactions, virulent RWA populations flourish and susceptible plants suffer extensive leaf chlorophyll loss. In incompatible interactions, RWA reproduction and population growth are significantly reduced and RWA-related chlorophyll loss in resistant plants is minor. The objectives of this study were to develop an understanding of the molecular and phytochemical bases of RWA resistance in plants containing the Dnx resistance gene. Microarray, real-time polymerase chain reaction, and phytohormone assays were conducted to identify transcriptome components unique to RWA-infested Dnx plants and susceptible (Dn0) plants, and to identify and characterize putative genes involved in Dnx plant defense responses. We found that RWA-infested Dnx plants upregulated >180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense. The expression of several of these genes in RWA-infested Dnx plants increased significantly from 6- to 24-h post infestation (hpi), but their expression in Dn0 plants, when present, was delayed until 48- to 96 hpi. Concentrations of 16- and 18-carbon fatty acids, trans-methyl-12-oxophytodienoic acid, and abscisic acid were significantly greater in Dnx foliage than in Dn0 foliage after RWA infestation, suggesting that Dnx RWA defense and resistance genes may be regulated via the oxylipin pathway. These findings provide a foundation for the elucidation of the molecular basis for compatible- and incompatible plant-aphid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argandona, V. H., Chaman, M., Cardemil, L., Munoz, O., Zuniga, G. A., and Corchera, L. J. 2001. Ethylene production and peroxidase activities in aphid-infested barley. J. Chem. Ecol. 27:53–68.

    Article  PubMed  CAS  Google Scholar 

  • Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O’Donovan, C., Redaschi, N., and Yeh, L. S. 2005. The universal protein resource (UniProt). Nucleic Acids Res. 33:D154–D159.

    Article  PubMed  CAS  Google Scholar 

  • Basky, Z. 2003. Biotypic and pest status differences between Hungarian and South African populations of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae). Pest Manag. Sci. 59:1152–1158.

    Article  PubMed  CAS  Google Scholar 

  • Berzonsky, W., Shanower, T., Lamb, R., Mckenzie, R., Ding, H., Harris, M. O., Peairs, F., Haley, S., Porter, D., and Ratcliffe, R. H. 2003. Breeding wheat for resistance to insects. Plant Breed. Rev. 22:221–296.

    Google Scholar 

  • Botha, A-M., Lacock, L., Niekerk, C. V., Matsioloko, M. T., Du Preez, F. B., Loots, S., Venter, E., Kunert, K. J., and Cullis, C. A. 2006. Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep. 25:41–54.

    Article  PubMed  CAS  Google Scholar 

  • Boyko, E. V., Smith, C. M., Vankatappa, T., Bruno, J., Deng, Y., Starkey, S. R., and Klaahsen, D. 2006. The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences modulate aphid-wheat interaction. J. Econ. Entomol. 99:1430–1445.

    Article  PubMed  CAS  Google Scholar 

  • Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X., and Sumner, L. W. 2006. MET-IDEA: a data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78:4334–4341.

    Article  PubMed  CAS  Google Scholar 

  • Burd, J. D. and Elliott, N. C. 1996. Changes in chlorophyll α fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 89:1332–1337.

    Google Scholar 

  • Burd, J. D., Porter, D. R., Puterka, G. J., Haley, S. D., and Peairs, F. B. 2006. Biotypic variation among North American Russian wheat aphid (Homoptera: Aphididae) populations. J. Econ. Entomol. 99:1862–1866.

    Article  PubMed  Google Scholar 

  • Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P., Mulder, N., Oinn, T., Maslen, J., Cox, A., and Apweiler, R. 2003. The gene ontology annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res. 13:662–672.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M.-S., Fellers, J. P., Stuart, J. J., Reese, J. C., and Liu, X. 2004. A group of related cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (say)] salivary glands. Insect Mol. Biol. 13:101–108.

    Google Scholar 

  • Ciepiela, A. 1989. Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomol. Exp. Appl. 51:269–275.

    Article  CAS  Google Scholar 

  • Collinge, M. and Boller, T. 2001. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Couldridge, C., Newbury, H. J., Ford-Lloyd, B., Bale, J., and Pritchard, J. 2007. Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. Bull. Entomol. Res. 97:523–532.

    Article  PubMed  CAS  Google Scholar 

  • Devonshire, A. L. and Field, L. M. 1991. Gene amplification and insecticide resistance. Annu. Rev. Entomol. 36:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Dhondt, S., Geoffroy, P., Stelmach, B. A., Legrand, M., and Heitz, T. 2000. Soluble phospholipase A(2) activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J. 23: 431–440.

    Article  PubMed  CAS  Google Scholar 

  • Divol, F., Vilaine, F., Thibivilliers, S., Amselem, J., Palauqui, J. C., Kusiak, C., and Dinant, S. 2005. Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol. Biol. 57:517–540.

    Article  PubMed  CAS  Google Scholar 

  • Dolatti, L., Ghareyazie, B., Moharramipour, S., and Noori-Daloii, M. R. 2005. Evidence for regional diversity and host adaptation in Iranian populations of the Russian wheat aphid. Entomol. Exp. Appl. 114:171–180.

    Article  CAS  Google Scholar 

  • Dong, J., Chen, C., and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51:21–37.

    Article  PubMed  CAS  Google Scholar 

  • Dong, H.-P., Peng, J., Bao, Z., Meng, X., Bonasera, J. M., Chen, G., Beer, S. V., and Dong, H. 2004. Downstream divergence of the ethylene signaling pathway for harpin-stimulated arabidopsis growth and insect defense. Plant Physiol. 136:3628–3638.

    Article  PubMed  CAS  Google Scholar 

  • Fidantsef, A. L., Stout, M. J., Thaler, J. S., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogensis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:97–114.

    Article  CAS  Google Scholar 

  • Forslund, K., Perrersson, J., Bryngelsson, T., and Jonsson, L. 2000. Aphid infestation induces PR-proteins differentially in barley susceptible or resistant to the bird cherry-oat aphid. Physiol. Plant. 110:496–502.

    Article  CAS  Google Scholar 

  • Gatehouse, A. M. R. and Boulter, D. 1983. Assessment of the antimetabolic effects of trypsin-inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus. J. Sci. Food Agric. 34:345–350.

    Article  CAS  Google Scholar 

  • Gaupels, F., Buhtz, A., Knauer, T., Deshmukh, S., Waller, F., van Bel, A. J. E., Kogel, K.-H., and Kehr, J. 2008. Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J. Exp. Bot. 59:3297–3306.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, T. L. and Martin, T. J. 1990. Resistance to Russian wheat aphid Diuraphis noxia, in wheat (Triticum aestivum). Cereal Res. Commun. 18:127–129.

    Google Scholar 

  • Hein, G. L. 1992. Influence of plant growth on Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae). Reproduction and damage symptom expression. J. Kans. Entomol. Soc. 65:369–376.

    Google Scholar 

  • Heng-Moss, T. M., Ni, X., Macedo, T., Markwell, J. P., Baxendale, F. P., Quisenberry, S. S., and Tolmay, V. 2003. Comparison of chlorophyll and cartenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J. Econ. Entomol. 96:475–481.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X. and Madan, A. 1999. CAP3: a DNA sequence assembly program. Genome Res. 9:868–877.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., and Okada, K. 2001. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209.

    Article  PubMed  CAS  Google Scholar 

  • Kalde, M., Barth, M., Somssich, I. E., and Lippok, B. 2003. Members of Arabidopsis WRKY group III transcripton factors are a part of different plant defense signaling pathways. Mol. Plant-Microb. Interact. 16:295–305.

    Article  CAS  Google Scholar 

  • Kaloshian, I. 2004. Gene-for-gene disease resistance: bridging insect pest and pathogen defense. J. Chem. Ecol. 30:2419–2438.

    Article  PubMed  CAS  Google Scholar 

  • Kaloshian, I., Kinser, M. G., Ullman, D. E., and Willamson, V. M. 1997. The impact of Meu1-mediated resistance in tomato on longevity, fecundity, and behavior of the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 83:181–187.

    Article  Google Scholar 

  • Kawano, T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21:829–837.

    PubMed  CAS  Google Scholar 

  • Kempema, L. A., Xinping, C., Holzer, F. M., and Walling, L. L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol. 143:850–865.

    Google Scholar 

  • Khan, S. A., Murugan, M., Starkey, S., Manley, A., and Smith, C. M. 2009. Inheritance and categories of resistance in wheat to Russian wheat aphid (Hemiptera: Aphididae) biotype 1 and biotype 2. J. Econ. Entomol. 102:654–1662.

    Article  Google Scholar 

  • Klingler, J., Creasy, R., Gao, L., Nair, R. M., Calix, A. S., Jacob, H. S., Edwards, O. R., and Singh, K. B. 2005. Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol. 137:1445–1455.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, A., Leon-Rayes, A., Ritsema, T., Verhage, A., Den Otter, F. C., Van Loon, L. C., and Pieterse, C. M. J. 2008. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147:1358–1368.

    Article  PubMed  CAS  Google Scholar 

  • Lacock, L. C., van Niekerk, S., Loots, F., du Preez, F. B., and Botha, A. M. 2003. Functional and comparative analysis of expressed sequences from Diuraphis noxia infested wheat obtained utilizing the conserved nucleotide binding site. African J. Biotechnol. 2:75–81.

    CAS  Google Scholar 

  • Lazzari, S., Starkey, S., Reese, J., Ray-Chandler, A., and Smith, C. M. 2009. Feeding behavior of Russian wheat aphid (Hemiptera: Aphididae) biotype 2 in response to wheat genotypes exhibiting different categories of resistance. J. Econ. Entomol. 102:1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Brader, G., and Palva, E. T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Zou, J., Li, M., Bilgin, D. D., Vodkin, L. O., Hartman, G. L., and Clough, S. J. 2008. Soybean defense responses to the soybean aphid. New Phytol. 179:185–195.

    Article  PubMed  CAS  Google Scholar 

  • Liechti, R. and Farmer, E. E. 2002. The jasmonate pathway. Science 296:1649–1650.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X. M., Smith, C. M., Gill, B. S., and Tolmay, V. 2001. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor. Appl. Genet. 102:504–510.

    Article  CAS  Google Scholar 

  • Liu, X. M., Smith, C. M., and Gill, B. S. 2005. Allelic relationships among Russian wheat aphid resistance genes. Crop Sci. 45:2273–2280.

    Article  CAS  Google Scholar 

  • Liu, X., Bai, J., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J. C., Harris, M., Stuart, J. J., and Chen, M.-S. 2007. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33:2171–2194.

    Article  PubMed  CAS  Google Scholar 

  • Lou, Y. and Baldwin, I. T. 2006. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol. 140:1126–1136.

    Article  PubMed  CAS  Google Scholar 

  • Malinga, J. N., Kinuya, M. G., Kamau, A. W., Wanjama, J. K., Awalla, J. O., and Pathak, R. S. 2007. Biotypic and genetic variation within tropical populations of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae) in Kenya. J. Entomol. 4:350–361.

    Article  CAS  Google Scholar 

  • Mao, P., Duan, W., Wei, C., and Li, Y. 2007. WRKY62 transcriptional factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol. 48:833–842.

    Article  PubMed  CAS  Google Scholar 

  • Martinez de Ilarduya, O., Nombela, G., Hwang, C. F., Williamson, V. M., Muniz, M., and Kaloshian, I. 2004. Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Mol. Plant Microbe Interact. 17:55–61.

    Article  PubMed  Google Scholar 

  • Miles, P. W. 1999. Aphid saliva. Biol. Rev. 74:41–85.

    Article  Google Scholar 

  • Miller, H. L., Neese, P. A., Ketring, D. L., and Dillwith, J. W. 1994. Involvement of ethylene in aphid infestation of barley. J. Plant Growth Regul. 13:167–171.

    Article  CAS  Google Scholar 

  • Miller, B., Madilao, L., Ralph, S., and Bohlmann, J. 2005. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 137:369–382.

    Article  PubMed  CAS  Google Scholar 

  • Moraes, R. A., Sales, M. P., Pinto, M. S. P., Silva, L. B., Oliveira, A. E. A., Machado, O. L. T., Fernández, K. V. S., and Xavier-Filho, J. 2000. Lima bean (Phaseolus lunatus) seed coat phaseolin is detrimental to the cowpea weevil (Callosobruchus maculatus). Braz. J. Med. Biol. Res. 33:191–198.

    PubMed  CAS  Google Scholar 

  • Moran, P. J. and Thompson, G. A. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol. 125:1074–1085.

    Article  PubMed  CAS  Google Scholar 

  • Moran, P. J., Cheng, Y. F., Cassell, J. L., and Thompson, G. A. 2002. Gene expression profiling of Arabidopsis thaliana in compatible plant–aphid interactions. Arch. Insect Biochem. Physiol. 51:182–203.

    Article  PubMed  CAS  Google Scholar 

  • Panda, N. and Khush, G. S. 1995. Host Plant Resistance to Insects. CAB/International Rice Research Institute, Wallingford.

    Google Scholar 

  • Park, S. J., Huang, Y. H., and Ayoubi, P. 2006. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932–947.

    Article  PubMed  CAS  Google Scholar 

  • Park, D.-S., Yi, G.-H., Lee, J.-H., Kwak, D.-Y., Yeo, U.-S., Oh, B.-G., Nam, M.-H., Goo, Y.-C., and Kim, H.-Y. 2007. The identification of candidate rice genes that confer resistant to the brown planthopper (Nilaparvata lugens) through representational difference analysis. Theor. Appl. Genet. 115:537–547.

    Article  PubMed  CAS  Google Scholar 

  • Prinsloo, G. J. 2000. Host and host instar preference of Aphelinus sp. nr. varipes (Hymenoptera: Aphelinidae), a parasitoid of cereal aphids (Homoptera: Aphididae) in South Africa. Afr. Entomol. 8:57–61.

    Google Scholar 

  • Quick, J. S., Ellis, G. E., Normann, R. M., Stromberger, J. A., Shanahan, J. F., Peairs, F. B., Rudolph, J. B., and Lorenz, K. 1996. Registration of ‘Halt’ wheat. Crop Sci. 36:210.

    Google Scholar 

  • Quisenberry, S. S. and Peairs, F. B. 1998. A Response Model for an Introduced Pest—The Russian Wheat Aphid. Thomas Say Publications in Entomology, Entomol. Soc. Am., Lanham.

    Google Scholar 

  • Reese, J. C., Schwenke, J. R., Lamont, P. S., and Zehr, D. D. 1994. Importance and quantification of plant tolerance in crop pest management programs for aphids: greenbug resistance in sorghum. J. Agric. Entomol. 11:255–270.

    Google Scholar 

  • Salzman, R. A., Brady, J. A., Finlayson, S. A., Buchanan, C. D., Summer, E. J., Sun, F., Klein, P. E., Klein, R. R., Pratt, L. H., Cordonnier-Pratt, M-M., and Mullet, J. E. 2005. Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol. 138:352–368.

    Article  PubMed  CAS  Google Scholar 

  • Sardesai, N., Subramanyam, S., Nemacheck, J., and Williams, C. E. 2005. Modulation of defense-response gene expression in wheat during Hessian fly larval feeding. J. Plant Interact. 1:39–50.

    Article  CAS  Google Scholar 

  • SAS Institute Inc. 2001. SAS/STAT Software Version 9.1. SAS Institute, Cary, NC.

  • Scharrenberg, C., Falk, J., Quast, S., Haussuhl, K., Humbeck, K., and Krupinska, K. 2003. Isolation of senescence-related cDNAs from flag leaves of field grown barley plants. Physiol. Plant. 118:278–288.

    Article  CAS  Google Scholar 

  • Schmelz, E. A., Engelberth, J., Tumlinson, J. H., Block, A., and Alborn, H. T. 2004. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 39:790–808.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D. D., Voelckel, C., Hartl, M., Schmidt, S., and Baldwin, I. T. 2005. Specificity in ecological Interactions. Attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiol. 138:1763–1773.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. M. 1989. Plant Resistance to Insects: A Fundamental Approach. Wiley, New York.

    Google Scholar 

  • Smith, C. M. 2004. Plant resistance against pests: issues and strategies, pp. 147–167, in O. Koul, G. S. Dhaliwal, and G. Cuperus (eds.). Integrated Pest Management: Potential, Constraints and Challenges. CABI Publ., Oxon.

    Chapter  Google Scholar 

  • Smith, C. M. 2005. Plant Resistance to Arthropods—Molecular and Conventional Approaches. Springer, The Netherlands.

    Google Scholar 

  • Smith, C. M. and Boyko, E. V. 2006. Mini Review: the molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol. Exp. Appl. 122:1–16.

    Article  CAS  Google Scholar 

  • Smith, C. M., Schotzko, D. J., Zemetra, R. S., Souza, E. J., and Schroeder-Teeter, S. 1991. Identification of Russian wheat aphid (Homoptera, Aphididae) resistance in wheat. J. Econ. Entomol. 84:328–332.

    Google Scholar 

  • Smith, C. M., Belay, T., Stauffer, C., Stary, P., Kubeckova, I., and Starkey, S. 2004. Identification of Russian wheat aphid (Homoptera: Aphididae) biotypes virulent to the Dn4 resistance gene. J. Econ. Entomol. 97:112–117.

    Article  Google Scholar 

  • Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J.-P., Brown, R., and Kazan, K., et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770.

    Article  PubMed  CAS  Google Scholar 

  • Stintzi, A., Weber, H., Reymond, P., Browse, J., and Farmer, E. E. 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. U. S. A. 98:12837–12842.

    Article  PubMed  CAS  Google Scholar 

  • Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., Takamiya, K., Shibata, D., Kobayashi, Y., and Ohta, H. 2005. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139:1268–1283.

    Article  PubMed  CAS  Google Scholar 

  • Theodoulou, F. L., Job, K., Slocombe, S. P., Footitt, S., Holdsworth, M., Baker, A., Larson, T. R., and Graham, I. A. 2005. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 137:835–840.

    Article  PubMed  CAS  Google Scholar 

  • Tjallingii, W. F. and Hogen-Esch, T. 1993. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18:317–328.

    Article  Google Scholar 

  • Tolmay, V. L., Lindeque, R. C., and Prinsloo, G. L. 2007. Preliminary evidence of a resistance-breaking biotype of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), in South Africa. Afr. Entomol. 15:228–230.

    Article  Google Scholar 

  • Turner, J. G., Ellis, C., and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell 14(suppl):S153–S164.

    PubMed  CAS  Google Scholar 

  • Urbanska, A., Tjallingii, W. F., Dixon, A. F. G., and Leszczynski, B. 1998. Phenol oxidizing enzymes in the grain aphid’s saliva. Entomol. Exp. Appl. 86:197–203.

    Article  CAS  Google Scholar 

  • van de Ven, W. T. G., Levesque, C. S., Perring, T. M., and Walling, L. L. 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423.

    PubMed  Google Scholar 

  • van Loon, L. C., Rep, M., and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135–162.

    Article  PubMed  CAS  Google Scholar 

  • Voelckel, C., Weisser, W. W., and Baldwin, I. T. 2004. An analysis of plant–aphid interactions by different microarray hybridization strategies. Mol. Ecol. 13:3187–3195.

    Article  PubMed  CAS  Google Scholar 

  • Voothuluru, P., Meng, J., Khajuria, C., Louis, J., Zhu, L., Starkey, S., Wilde, G. E., Baker, C. A., and Smith, C. M. 2006. Categories and inheritance of resistance to Russian wheat aphid (Homoptera:Aphididae) Biotype 2 in a selection from wheat cereal introduction 2401. J. Econ. Entomol. 99:1854–1861.

    Article  PubMed  Google Scholar 

  • Vos, P., Simons, G., Jesse, T., Wijbrandi, J., and Heinen, L. et al. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 16:1315–1316.

    Article  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    PubMed  CAS  Google Scholar 

  • Wang, L. and Zhang, Y. 2004. Data integration and target selection for Medicago genomics, pp. 275–288, in A. Hopkins, Z.-Y. Wang, R. Mian, M. Sledge, and R. E. Barker (eds.). Developments in Plant Breeding: Molecular Breeding of Forage and Turf. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Xiong, L. Z., Lee, M. W., Qi, M., and Yang, Y. N. 2001. Identification of defense—relate rice genes by suppression subtractive hybridization and differential screening. Mol. Plant Microbe Interact. 14:685–692.

    Article  PubMed  CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Sreenivasulu, N., Weschke, W., Stein, N., Rudd, S., Radchuk, V., Potokina, E., Scholz, U., Schweizer, P., Zierold, U., Langridge, P., Varshney, R. K., Wobus, U., and Graner, U. 2004. Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J. 40:276–290.

    Article  PubMed  Google Scholar 

  • Zhu, J. K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247–273.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman, K., Salzman, R. A., Ahn, J., and Koiwa, H. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 134:420–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nanyan Lu for helpful comments and support in the Affymetrix array data acquisition. This research was supported by a Kansas Crop Improvement Association grant to CMS and is contribution No. 08-151-J of the Kansas Agricultural Experiment Station. This research was performed in the Gene Expression Facility at Kansas State University, which is supported through the National Science Foundation grant, DBI 0421427. Plant phytohormone analyses were performed at the Kansas Lipidomics Research Center Analytical Laboratory, supported by the Functional Genomics Consortium initiative of Kansas State University’s Targeted Excellence Program. The Kansas Lipidomics Research Center is supported by National Science Foundation (EPS 0236913, MCB 0455318, DBI 0521587), Kansas Technology Enterprise Corporation, K-IDeA Networks of Biomedical Research Excellence (INBRE) of National Institute of Health (P20RR16475), and Kansas State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Michael Smith.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Table 1

Mean gene upregulation (fold change) in wheat plant leaves containing the Dnx gene for resistance at 24 h after phloem feeding by Russian wheat aphid biotype 1 (DOC 62 kb)

Supplemental Table 2

Mean gene up regulation (fold change) in leaves of Russian wheat aphid (RWA)-susceptible (Dn0) wheat plants at 24 hr after phloem feeding by RWA biotype 1 (DOC 57 kb)

Supplemental Table 3

Mean gene down regulation (fold change) in wheat plant leaves containing the Dnx gene for resistance at 24 h after phloem feeding by Russian wheat aphid biotype 1 (DOC 34 kb)

Supplemental Table 4

Mean gene down regulation (fold change) in leaves of Russian wheat aphid (RWA)-susceptible (Dn0) wheat plants at 24 h after phloem feeding by RWA biotype 1 (DOC 38 kb)

Supplemental Data Fig. 1

The reaction versus cycle graph of Q9P3N1 Real-time PCR. (PPT 73 kb)

Supplemental Data Fig. 2

The standard curve of Q9P3N1 Real-Time PCR: K = −2.511, B = 14.570, R2 = 0.998. (PPT 72 kb)

Supplemental Data Fig. 3

The reaction versus cycle graph of Q5ZD81 Real-time PCR. (PPT 73 kb)

Supplemental Data Fig. 4

The standard curve of Q5ZD81 Real-time PCR: K = −2.132, B = 2.126, R2 = 1.000. (PPT 72 kb)

Supplemental Data Fig. 5

The reaction versus cycle graph of Q6Z1A3 Real-time PCR. (PPT 76 kb)

Supplemental Data Fig. 6

The standard curve of Q6Z1A3 Real-time PCR: K = −3.423, B = −23.048, R2 = 0.996. (PPT 72 kb)

Supplemental Data Fig. 7

The reaction versus cycle graph of Q6Z1A3 Real-time PCR. (PPT 73 kb)

Supplemental Data Fig. 8

The standard curve of Q6Z1A3 Real-time PCR: K = −3.207, B = −4.493, R2 = 0.999. (PPT 72 kb)

Supplemental Data Fig. 9

The reaction versus cycle graph of Q7XN01 Real-time PCR. (PPT 75 kb)

Supplemental Data Fig. 10

The standard curve of Q7XN01 Real-time PCR: K = −3.726, B = 24.987, R2 = 0.995. (PPT 73 kb)

Supplemental Data Fig. 11

The reaction versus cycle graph of Q6I5G9 Real-time PCR. (PPT 75 kb)

Supplemental Data Fig. 12

The standard curve of Q6I5G9 Real-time PCR: K = −3.250, B = 14.675, R2 = 0.994. (PPT 72 kb)

Supplemental Data Fig. 13

The reaction versus cycle graph of AB18199 (actin control) Real-time PCR. (PPT 74 kb)

Supplemental Data Fig. 14

The standard curve of AB18199 (actin control) Real-time PCR: K = −3.129, B = −34.47, R2 = 0.991. (PPT 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C.M., Liu, X., Wang, L.J. et al. Aphid Feeding Activates Expression of a Transcriptome of Oxylipin-based Defense Signals in Wheat Involved in Resistance to Herbivory. J Chem Ecol 36, 260–276 (2010). https://doi.org/10.1007/s10886-010-9756-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9756-8

Keywords

Navigation