Skip to main content
Log in

Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)?

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Diuraphis noxia (Russian wheat aphid, RWA) is a major pest on wheat in South Africa and most other wheat growing countries. Being a probing-sucking insect, RWAs insert their stylets into the phloem sieve elements and feed on the phloem sap. This feeding causes necrotic lesions in resistant varieties, or decoloration of leaves and death in susceptible varieties. In an effort to broaden our understanding on the response of the plant to RWA feeding, we synthesized and analyzed expressed sequence tags (ESTs) from suppression subtractive hybridization (SSH) libraries. These libraries were constructed using near isogenic wheat lines susceptible ‘Tugela’ and resistant ‘TugelaDN’(Dn1) to RWA, as well as accession lines PI137739 (Dn1) and PI294994 (Dn5). Analysis of 200 ESTs from the libraries revealed the involvement of transcripts encoding genes involved in cell maintenance, growth and regulation, plant defense and signaling, photosynthesis and energy production, and of unknown function. A selection of these ESTs, in combination with clones obtained from other sources, were used on a custom array to study the expression profiles of 256 candidate wheat sequences putatively involved in plant defense against RWA. The selected sequences included wheat genomic clones with putative nucleotide binding site (NBS) motifs, rapid amplification of cDNA ends PCR (RACE-PCR), and cDNA clones from RWA induced libraries. Genomic banana and flax clones that were obtained using representative difference analysis (RDA), and suspected to be involved in abiotic stress responses, were also spotted onto the microarray slides. The spotted custom arrays were then hybridized against cDNA isolated from a resistant cultivar ‘Tugela DN’ on 0, 2, 5, and 8 days after infestation, post-labeled with Cy3- or Cy5-fluorescent dyes. The subsequent expression profiling using DNA microarray, RT-PCR, and Northern Blot analysis identified 29 transcripts associated with the feeding response. These transcripts encoded proteins functioning in direct defense and signaling, oxidative burst, cell wall degradation, cell maintenance, photosynthesis, and energy production. Results indicate that plants co-ordinately regulate gene expression when attacked by RWA. It is hypothesized that the NBS-LRR proteins are important in receptor recognition and signaling, which enable the plant to overcome the stresses inflicted by RWA feeding. It is further suggested that the ability to maintain photosynthetic function with resultant energy production is one of the determining factors ensuring the survival of the resistant varieties when coping with the RWA feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  • Aarts N, Metz M, Holub M, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for eds1 and NDR1 by disease resistance genes define at least two R-mediated signalling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306–10311

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Phenoloxidae in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Bahlmann L, Govender P, Botha A-M (2003) The leaf epicuticular wax ultrastructure and trichome presence on Russian wheat aphid (Diuraphis noxia) resistant and susceptible leaves. Afr Entomol 11:59–64

    Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signalling in plant–microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bent AF (1996) Plant disease resistance: function meets structure. Plant Cell 8:1757–1771

    Article  PubMed  CAS  Google Scholar 

  • Botha A-M, Nagel MAC, van der Westhuizen AJ, Botha FC (1998) Chitinase isoenzymes in near-isogenic wheat lines challenged with Russian wheat aphid, exogenous ethylene and mechanical wounding. Bot Bull Acad Sin 39:99–106

    CAS  Google Scholar 

  • Botha-Oberholster A-M, Matsioloko MT, Van Eck L, Walters RSG (2004) Russian wheat aphid-mediated elicitation of the wheat defense-transcriptome. Plant Biology 2004 Programme, Lake Buena Vista, Florida, pp 126

  • Burd JD, Elliott NC (1996) Changes in chlorophyll α fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 89:1332–1337

    Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Chu T-M, Weir B, Wolfinger RD (2002) A systematic statistical linear modeling approach to oligonucleotide array experiments. Math Biosci 176:35–51

    Article  PubMed  CAS  Google Scholar 

  • Davies EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  Google Scholar 

  • Deol GS, Reese JC, Gill BS, Wilde GE, Campbell LR (2002) Comparative chlorophyll losses in susceptible wheat leaves fed upon by the Russian wheat aphids or greenbugs (Homoptera: Aphididae). J Kans Entomol Soc 74:192–198

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology: an optimization approach, 2nd edn. Chapman & Hall, London, pp 27–38

    Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Q Rev Biol 64:1–30

    Article  PubMed  CAS  Google Scholar 

  • Dudoit S, Yang YH, Callow MJ, Speed TP (2001) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments http://www. stat.berkeley.edu/users/terry/zarray/Html/papersindexhtml

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM (1999) Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol Mol Plant Pathol 54:97–114

    Article  CAS  Google Scholar 

  • Flavell AJ, Pearce SR, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fouché A, Verhoeven RL, Hewitt PH, Walters MC, Kriel CF, De Jager J (1984) Russian wheat (Diuraphis noxia) feeding damage on wheat, related cereals and a Bromus grass species. In: Walters MC (ed) Progress in Russian wheat aphid (Diuraphis naoxia Mordv.) research in the Republic of South Africa. Technical communication, Vol 191, pp22–33

  • Gussow D, Clackson T (1989) Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res 17:4000

    Article  PubMed  CAS  Google Scholar 

  • Haldrupt A, Lunde C, Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278:33276–33283

    Article  CAS  Google Scholar 

  • Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P (2001) The MLA coiled-coil, NBS-LRR protein confers AvrMla6 resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25:335–348

    Article  PubMed  CAS  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DG, Wendel JF, McKnight TD, Price HJ, Stelly DM (2000) Ty-1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res 8:73–76

    Article  PubMed  CAS  Google Scholar 

  • Haung G, Dong R, Maier T, Allen R, Davis EL, Baum TJ, Hussey RS (2004) Use of solid-phase subtractive hybridization for the identification of parasitism gene candidates from the root-knot nematode Meloidogyne incognita. Mol Plant Pathol 5:217–222

    Article  Google Scholar 

  • Heng-Moss TM, Ni X, Macedo T, Markwell JP, Baxendale FP, Quisenberry SS, Tolmay V (2003) Comparison of chlorophyll and cartenoid concentrations among Russian wheat aphid (Homoptera: Apididae)-infested wheat isolines. J Econ Entomol 96:475–481

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    Article  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Jackson AO, Taylor CB (1996) Plant–microbe interactions: life and death at the interface. Plant Cell 8:1651–1668

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Angstrom resolution. Nature 411:909–916

    Article  PubMed  CAS  Google Scholar 

  • Katsiotis SG, Hagidimitrriou M, Loukas M (2002) Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet 104:926–933

    Article  PubMed  CAS  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant–pathogen interactions. Annu Rev Genet 24:425–429

    Article  Google Scholar 

  • Lacock L, van Niekerk C, Loots S, du Preez FB, Botha A-M (2003) Functional and comparative analysis of expressed sequences from Diuraphis noxia infested wheat obtained utilizing the Nucleotide Binding Site conserved motif. Afr J Biotech 2:75–81

    CAS  Google Scholar 

  • Lacock L, Botha A-M (2003) Suppression subtractive hybridization (SSH) employed to investigate gene expression after Russian wheat aphid infestation. Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy (1–6 September 2003), Vol 3, pp 1187–1189

  • Lall IPS, Maneesha KC, Upadhyaya KC (2002) Panzee, a copia-like retrotransposon from the grain legume, pigeonpea (Cajanus cajan L.). Mol Genet Genomics 267:271–280

    Article  PubMed  CAS  Google Scholar 

  • Maiwald D, Dietzmann A, Jahns P, Pesaresi P, Joliot P, Joliot A, Levin JZ, Salamini F, Leister D (2003) Knock-out of the genes coding for the Rieske protein and the ATP-Synthase δ-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression. Plant Physiol 133:191–202

    Article  PubMed  CAS  Google Scholar 

  • Matsioloko MT, Botha A-M (2003) cDNA-AFLP profiling in wheat upon Russian wheat aphid feeding. Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy (1–6 September 2003), Vol 3, pp 1275–1277

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Mohase L, van der Westhuizen AJ (2002a) Salicylic acid is involved in resistance responses in the Russian wheat aphid–wheat interaction. J Plant Physiol 159:585–590

    Article  CAS  Google Scholar 

  • Mohase L, van der Westhuizen AJ (2002b) Glycoproteins from Russian wheat aphid infested wheat induce defense responses. Z Naturforsh 57c:867–873

    Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Moran PJ, Cheng YF, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant–aphid interactions. Arch Insect Biochem Physiol 51:182–203

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj N, Reese JC, Kirkham MB, Kofoid K, Campbell LR, Loughin TM (2002) Relationship between chlorophyll loss and photosynthetic rate in greenbug (Homoptera: Aphididae) damaged sorghum. J Kans Entomol Soc 75:101–109

    Google Scholar 

  • Pan Q, Liu Y-S, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Reymond P, Weber HY, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Bennet AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183

    Article  PubMed  Google Scholar 

  • Ruelland E, Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation of relief or inhibition? Trends Plant Sci 4:136–141

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Vol 1, 2, 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • SAS Institute Inc. (1999) SAS/STAT Software version 8. SAS Institute, Cary, NC

  • Smith CM, Schotzko DJ, Zemetra RS, Souza EJ (1992) Categories of resistance in plant introductions of wheat resistant to Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 96:352–360

    Google Scholar 

  • Swanepoel E, Lacock L, Myburg AA, Botha AM (2003) A leucine rich homolog to Aegilops tauschii from bread wheat line PI137739 obtained by suppression subtractive hybridization shows linkage to Russian wheat aphid resistance gene Dn1. Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy (1–6 September 2003), Vol 3, p 1263–1265

  • Van der Biezen EA, Jones JDG (1998) Plant disease resistance proteins and the gene for gene concept. Trends Biochem Sci 23:454–456

    Article  PubMed  Google Scholar 

  • Van der Westhuizen AJ, Botha FC (1993) Effect of the Russian wheat aphid on the composition and synthesis of water soluble proteins in resistant and susceptible wheat. J Agron Crop Sci 170:322–326

    Article  Google Scholar 

  • Van der Westhuizen AJ, Qian X-M, Botha A-M (1998a) Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep 8:132–137

    Article  Google Scholar 

  • Van der Westhuizen AJ, Qian X-M, Botha A-M (1998b) ß-1,3-glucanases in wheat and resistance to the Russian wheat aphid. Physiol Plant 103:125–131

    Article  Google Scholar 

  • Van der Westhuizen AJ, Qian X-M, Wilding M, Botha A-M (2002) Purification and immunocytochemical localization of a wheat β-1,3-glucanase induced by Russian wheat aphid infestation. SA J Sci 98:197–202

    Google Scholar 

  • Van Niekerk C, Botha A-M (2003) Using suppression subtractive hybridization (SSH) to screen for novel sequences expressed in response to Russian wheat aphid feeding. Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy (1–6 September 2003), Vol 3, p 1281–1283

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Walters MC, Penn F, Du Toit F, Botha TC, Aalbersberg K, Hewitt PH, Broodryk SW (1980) The Russian wheat aphid. Farming in South Africa. Wheat: Winter Rainfall G.3/1980

  • Wang T, Quisenberry SS, Ni X, Tolmay V (2004) Aphid (Hemiptera: Aphidae) resistance in wheat near-isogenic lines. J Econ Entomol 96:475–481

    Google Scholar 

  • Wang YH, Speed T (2002) Design of microarray expression experiments. In: Bowtell D, Sambrook J (eds) DNA microarrays: A molecular cloning manual, Part 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 513–525

    Google Scholar 

  • Wessler SR, Burea TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  PubMed  CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their transverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to Mr. Danie Theron (ACTG Microarrayer Facility, UP) for printing of microarrays and technical advice, and to Dr. Zander Myburg for his valuable contributions during the statistical analysis of the data. We greatly acknowledge the Winter Cereal Trust, National Research Foundation (NRF), Technology and Human Resources for Industry Programme (THRIP) of the NRF, and Department of Trade and Industry (DTI) for financial support, and the University of Pretoria for the provision of infrastructure

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Maria Botha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botha, AM., Lacock, L., van Niekerk, C. et al. Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)?. Plant Cell Rep 25, 41–54 (2006). https://doi.org/10.1007/s00299-005-0001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0001-9

Keywords

Navigation