Skip to main content

Advertisement

Log in

Facile Synthesis of Silver Nanoparticles Using Vernonia anthelmintica (L.) Willd. and Their Toxicity Against Spodoptera litura (Fab.), Helicoverpa armigera (Hüb.), Aedes aegypti Linn. and Culex quinquefasciatus Say

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study was aimed to evaluate the antifeedant, larvicidal, pupicidal, biochemical effects of Vernonia anthelmintica seeds mediated AgNPs against Spodoptera litura, Helicoverpa armigera, Culex quinquefasciatus and Aedes aegypti. The potential antifeedant activity of synthesized AgNPs were 86.90% and 89.83% and larvicidal activity of (LC50) 56.42 μg/mL and 63.65 μg/mL against S. litura and H. armigera respectively. Furthermore, larval growth duration was increased as 13.66 and 15.85 days on S. litura and H. armigera as compared to control 7.83 and 8.05 days. The AgNPs caused larvicidal activity of (LC50) 45.14 µg/mL and 53.23 µg/mL against Ae. aegypti and Cx. quinquefasciatus. The increased α esterase level of 85.00, 85.33 0.49 and 0.53 μg napthol produced/min/mg larval protein and β esterase level of 92.66, 101.67, 0.53 and 0.48 μg napthol produced/min/mg larval protein and glutathione S-transferase enzyme level of 146.33, 160.00, 0.75 and 0.65 μmol/min/mg larval proteins on S. litura, H. armigera, Ae. aegypti and Cx. quinquefasciatus. The damaged midget cells and peritrophic membrane was observed on treated larvae of S. litura, H. armigera, Ae. aegypti and Cx. quinquefasciatus. Conclusively, biosynthesised of AgNPs using V. anthelmintica seeds were used as potential biopesticide for controlling S. litura and H. armigera, Ae. aegypti and Cx. quinquefasciatus.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. A. Tuerxuntayi, Y. Q. Liu, A. Tulake, M. Kabas, A. Eblimit, and H. A. Aisa (2014). Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement. Altern. Med. 14, 166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. D. Maulina, S. B. Sumitro, M. Amin, and S. R. Lestari (2018). Identification of bioactive compounds from Mirabilis jalapa L. (Caryophyllales: Nyctaginaceae) extract as biopesticides and their activity against the immune response of Spodoptera litura F. (Lepidoptera: Noctudiae). J. Biopestic. 11 (2), 89–97.

    CAS  Google Scholar 

  3. J. P. Cunningham and M. P. Zalucki (2014). Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J. Econ. Entomol. 107 (3), 881–896.

    Article  PubMed  Google Scholar 

  4. S. K. Yadav and S. Patel (2017). Bioactivity of some plant extracts against larvae of Spodoptera litura (Fab.) and Athalia proxima lugens (Klug.) under laboratory conditions. J. Entomol. Zool. Stud. 5 (2), 1430–1433.

    Google Scholar 

  5. A. Jeyasankar, T. Chinnamani, V. Chennaiyan, and G. Ramar (2014). Antifeedant activity of Barleria buxifolia (Linn.) (Acanthaceae) against Spodoptera litura Fabricius and Helicoverpa armigera Hübner (Lepidotera: Noctuidae). Int. J. Nat. Sci. Res. 2 (5), 78–84.

    Google Scholar 

  6. B. D. Lade, D. P. Gogle, and S. B. Nandeshwar (2017). Nano Bio Pesticide to constraint plant destructive pests. J. Nanomed. Res. 6 (3), 1–9.

    Article  Google Scholar 

  7. R. Maheswaran, K. Baskar, S. Ignacimuthu, S. Maria Packiam, and K. Rajapandiyan (2019). Bioactivity of Couroupita guianensis Aubl. against filarial and dengue vectors and non-target fish. S. Afr. J. Bot. 125, 46–53.

    Article  Google Scholar 

  8. U. Muthukumaran, M. Govindarajan, and M. Rajeswary (2015). Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 114 (3), 989–999.

    Article  PubMed  Google Scholar 

  9. World Health Organization, Global Strategy for Dengue Prevention and Control 2012–2020. (World Health Organization, Geneva, 2012)

  10. P. A. C. Kamatchi, R. Maheswaran, and S. Ignacimuthu (2016). Evaluation of larval toxicity of Lantana camara L. and Catharanthus roseus L. against Culex quinquefasciatus Say and Aedes Aegypti L. Entomol. Ornithol. Herpetol. 2016, 5–1.

    Google Scholar 

  11. G. B. Hosamani, R. R. Patil, V. I. Benagi, S. S. Chandrashekhar, and B. S. Nandihali (2019). Synthesis of green silver nanoparticles from soybean seed and its bioefficacy on Spodoptera litura (F.). Int. J. Curr. Microbiol. Appl. Sci. 8 (9), 610–618.

    Article  CAS  Google Scholar 

  12. R. Maheswaran, S. Sathish, and S. Ignacimuthu (2008). Larvicidal activity of Leucas aspera (Willd.) against the larvae of Culex quinquefasciatus Say and Aedes aegypti L. Int. J. Integr. Biol. 2, 214–217.

    Google Scholar 

  13. R. Maheswaran, S. Sukumaran, G. Nattudurai, and S. Ignacimuthu (2016). Bioefficacy of essential oil from Toddalia asiatica (L.) Lam. against dengue vector mosquitoes Aedes aegypti L. and Aedes albopictus Skuse. Indian J. Nat. Prod. Resour. 7 (3), 245–251.

    Google Scholar 

  14. R. Maheswaran and S. Ignacimuthu (2014). Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. Parasitol. Res. 113, 3143–3150.

    Article  PubMed  Google Scholar 

  15. S. Sukumaran and R. Maheswaran (2020). Larvicidal activity of Elytraria acaulis against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J. Arthropod Borne Dis. 14 (3), 293–301.

    PubMed  PubMed Central  Google Scholar 

  16. R. Maheswaran and S. Ignacimuthu (2012). A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol. Res. 110 (5), 1801–1013.

    Article  PubMed  Google Scholar 

  17. R. Maheswaran and S. Ignacimuthu (2013). Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. J. Ecotoxicol. Environ. Saf. 97, 26–31.

    Article  CAS  Google Scholar 

  18. A. Bhattacharyya, A. Bhaumik, P. U. Rani, S. Mandal, and T. T. Epidi (2010). Nano-particles—a recent approach to insect pest control. Afr. J. Biotechnol. 9 (24), 3489–3493.

    CAS  Google Scholar 

  19. K. Shahzad and F. Manzoor (2019). Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem. Toxicol. 44 (1), 1–11.

    Article  PubMed  CAS  Google Scholar 

  20. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, and M. J. Yacaman (2005). Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3 (1), 1–10.

    Article  Google Scholar 

  21. M. Rouhani, M. AminSamih, and S. Kalantari (2012). Efecto insecticida de nanopartículas de plata y zinc contra Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 72 (4), 590–594.

    Article  Google Scholar 

  22. P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm. J. 24 (4), 473–484.

    Article  PubMed  Google Scholar 

  23. T. Ito, S. Aimaiti, N. N. Win, T. Kodama, and H. Morita (2016). New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg. Med. Chem. Lett. 26 (15), 3608–3611.

    Article  CAS  PubMed  Google Scholar 

  24. R. Srivastava, A. Verma, A. Mukerjee, and N. Soni (2014). Phytochemical, pharmacological and pharmacognostical profile of Vernonia anthelmintica: an overview. Res. Rev.: J. Pharm. Phytochem. 2 (2), 22–28.

    Google Scholar 

  25. K. V. Otari, R. V. Shete, C. D. Upasani, V. S. Adak, M. Y. Bagade, and A. N. Harpalani (2010). Evaluation of anti-inflammatory and anti-arthritic activities of ethanolic extract of Vernonia anthelmintica seeds. J. Cell Tissue Res. 10 (2), 2269–3228.

    CAS  Google Scholar 

  26. J. Parekh and S. Chanda (2008). Antibacterial activity of aqueous and alcoholic extracts of 34 Indian medicinal plants against some Staphylococcus species. Turk. J. Biol. 32, 63–71.

    Google Scholar 

  27. S. F. Shaik, D. R. Maddirala, V. K. Kondeti, T. S. K. Mekala, R. B. Kasetti, and C. A. Rao (2010). Antidiabetic and anti-hyperlipidemic activity of ethyl acetate: isopropanol (1:1) fraction of Vernonia anthelmintica seeds in Streptozotocin induced diabetic rats. Food Chem. Toxicol. 48, 495–501.

    Article  CAS  Google Scholar 

  28. N. K. Dogra, S. Kumar, and D. Kumar (2020). Vernonia anthelmintica (L.) Willd.: an ethnomedicinal, phytochemical, pharmacological and toxicological review. J. Ethnopharmacol. 28, 112777.

    Article  CAS  Google Scholar 

  29. H. Lei, L. Ya, W. Fei, F. L. Dan, and G. Kun (2012). Biologically active steroids from the aerial parts of Vernonia anthelmintica Will. Fitoterapia 02459, 1–6.

    Google Scholar 

  30. L. Yongqiang, E. N. Alfarius, Y. Hirasawa, A. Nakata, T. Kaneda, N. Uchiyama, Y. Goda, O. Shirota, H. Morita, and H. A. Aisa (2010). Vernodalidimers A and B, novel orthoester elemanolide dimers from seeds of Vernonia anthelmintica. Tetrahedron Lett. 51, 6584–6587.

    Article  CAS  Google Scholar 

  31. N. Jahan, M. Ahmad, F. Mehjabeen Saeed, A. B. Amber Rehman, and S. Muhammad (2014). Anti-nociceptive activity of seed extract of Vernonia anthelmintica willd. Pak. J. Pharm. Sci. 27 (6), 2177–2181.

    PubMed  Google Scholar 

  32. T. Guilian, Z. Ubin, Z. Tianyou, Y. Fuquan, and I. Yoichiro (2004). Separation of flavonoids from the seeds of Vernonia anthelmintica Willd. by high-speed counter-current chromatography. J. Chromatogr. A 1049, 219–222.

    Article  Google Scholar 

  33. K. Baskar, R. Maheshwaran, S. Kingsley, and S. Ignacimuthu (2011). Bioefficacy of plant extracts against Asian army worm Spodoptera litura Fab. (Lepidoptera: Noctuidae). J. Agric. Technol. 7 (1), 123–131.

    Google Scholar 

  34. E. S. Vanderzant, C. D. Richardson, and S. W. Fort Jr. (1962). Rearing of the bollworm on artificial diet. J. Econ. Entomol. 55, 140–140.

    Article  Google Scholar 

  35. R. Maheswaran and S. Ignacimuthu (2015). Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L. Environ. Sci. Pollut. Res. 22 (11), 8280–8287.

    Article  CAS  Google Scholar 

  36. R. Maheswaran and S. Ignacimuthu (2015). A novel biopesticide Ponneem to control human vector mosquitoes Anopheles stephensi L. and Culex quinquefasciatus Say. Environ. Sci. Pollut. Res. 22 (17), 13153–13166.

    Article  CAS  Google Scholar 

  37. R. P. Singh and N. C. Pant (1980). Lycorine—a resistance factor in the plant subfamily Amarylloidiodeae against desert locust. Experientia 36, 552–555.

    Article  CAS  Google Scholar 

  38. W. S. Abbott (1925). A method of computing the effectiveness of insecticides. J. Econ. Entomol. 18, 265–267.

    Article  CAS  Google Scholar 

  39. WHO, Guidelines for Laboratory and Field Testing of Mosquito Larvicides, WHO/CDS/WHOPES/GCDPP/2005.13 (WHO, Geneva, 2005)

  40. J. Matowo, M. A. Kulkarni, F. W. Mosha, R. M. Oxborough, J. A. Kitau, F. Tenu, and M. Rowland (2010). Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar. J. 9, 193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. W. H. Habig, M. J. Pabst, and W. B. Jacoby (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.

    Article  CAS  PubMed  Google Scholar 

  42. A. Dinesh Kumar, E. Srimaan, M. Chellappandian, P. Vasantha Srinivasan, S. Karthi, A. Thanigaivel, and K. Kalaivani (2018). Target and non-target response of Swietenia mahagoni Jacq. chemical constituents against tobacco cutworm Spodoptera litura Fab. and earthworm Eudrilus eugeniae Kinb. Chemosphere 199, 35–43.

    Article  CAS  PubMed  Google Scholar 

  43. SPSS, IBM SPSS Statistics Version 21. (International Business Machines Corp, Boston, 2012), p. 126.

    Google Scholar 

  44. D. J. Finney, Probit Analysis (Cambridge University Press, Cambridge, 1971).

    Google Scholar 

  45. S. B. Santhosh, R. Yuvarajan, and D. Natarajan (2015). Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol. Res. 114 (8), 3087–3096.

    Article  CAS  PubMed  Google Scholar 

  46. M. Q. Nasar, T. Zohra, A. T. Khalil, S. Saqib, M. Ayaz, A. Ahmad, and Z. K. Shinwari (2019). Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem. Lett. Rev. 12 (3), 310–322.

    Article  CAS  Google Scholar 

  47. R. S. Bhat, J. Almusallam, S. Al Daihan, and A. Al-Dbass (2019). Biosynthesis of silver nanoparticles using Azadirachta indica leaves: characterisation and impact on Staphylococcus aureus growth and glutathione-S-transferase activity IET. Nanobiotechnology 13 (5), 498–502.

    Article  PubMed Central  Google Scholar 

  48. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4 (3), 707–716.

    Article  CAS  PubMed  Google Scholar 

  49. P. U. Rani, K. P. Laxmi, V. Vadlapudi, and B. Sreedhar (2016). Phytofabrication of silver nanoparticles using the mangrove associate, Hibiscus tiliaceus plant and its biological activity against certain insect and microbial pests. J. Biopestic. 9 (2), 167.

    Article  Google Scholar 

  50. F. Jalilian, A. Chahardoli, K. Sadrjavadi, A. Fattahi, and Y. Shokoohinia (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol. 31 (3), 1323–1332.

    Article  CAS  Google Scholar 

  51. P. U. Rani, J. Yasur, K. S. Loke, and D. Dutta (2016). Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol. Plant. 38 (2), 58.

    Article  CAS  Google Scholar 

  52. T. Rajkumar, A. Sapi, G. Das, T. Debnath, A. Ansari, and J. K. Patra (2019). Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J. Photochem. Photobiol. B 193, 1–7.

    Article  CAS  PubMed  Google Scholar 

  53. K. Murugan, M. Roni, C. Panneerselvam, U. Suresh, R. Rajaganesh, R. Aruliah, and S. Kumar (2017). Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213.

    Article  CAS  Google Scholar 

  54. A. A. Kajani, A. K. Bordbar, S. H. Z. Esfahani, A. R. Khosropour, and A. Razmjou (2014). Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 4 (106), 61394–61403.

    Article  CAS  Google Scholar 

  55. S. Mukherji, J. Ruparelia, and S. Agnihotri, Antimicrobial activity of silver and copper nanoparticles: variation in sensitivity across various strains of bacteria and fungi, in Nano-antimicrobials (Springer, Berlin, 2012), pp. 225–251.

    Chapter  Google Scholar 

  56. P. Das, K. Ghosal, N. K. Jana, A. Mukherjee, and P. Basak (2019). Green synthesis and characterization of silver nanoparticles using belladonna mother tincture and its efficacy as a potential antibacterial and anti-inflammatory agent. Mater. Chem. Phys. 228, 310–317.

    Article  CAS  Google Scholar 

  57. M. Anandan, G. Poorani, P. Boomi, K. Varunkumar, K. Anand, A. A. Chuturgoon, and H. G. Prabu (2019). Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem. 80, 80–88.

    Article  CAS  Google Scholar 

  58. R. S. A. Bharani and S. K. R. Namasivayam (2017). Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—an eco-friendly approach of insect pest control. J. Environ. Chem. Eng. 5 (1), 453–467.

    Article  CAS  Google Scholar 

  59. G. S. Jadhav, A. A. Devarshi, and S. R. Yankanchi (2016). Efficacy of certain Clerodendrum leaf crude extracts against cutworm, Spodoptera litura Fab. and cotton bollworm Helicoverpa armigera Hub. J. Entomol. Zool. 4 (4), 466–472.

    Google Scholar 

  60. A. Ponsankar, K. Sahayaraj, S. Senthil-Nathan, P. Vasantha-Srinivasan, S. Karthi, A. Thanigaivel, and W. B. Hunter (2019). Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. 27 (19), 23390–23401.

    Article  CAS  Google Scholar 

  61. M. Gabriel Paulraj, N. Shanmugam, and S. Ignacimuthu (2014). Antifeedant activity and toxicity of two alkaloids from Adhatoda vasica Nees leaves against diamondback moth Plutella xylostella (Linn.) (Lepidoptera: Plutellidae) larvae. Arch. Phytopathol. Plant Prot. 47 (15), 1832–1840.

    Article  CAS  Google Scholar 

  62. S. Kantrao, M. A. Ravindra, S. M. D. Akbar, P. Jayanthi, and A. Venkataraman (2017). Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): interaction with midgut protease. J. Asia Pac. Entomol. 20 (2), 583–589.

    Article  Google Scholar 

  63. J. Ravikumar, P. Samuthiravelu, S. M. H. Qadri, L. Hemanthkumar, and S. Jayaraj (2010). Integrated Pest Management (IPM) module for Tukra mealy bug, Maconellicoccus hirsutus (Green) and leaf webber, Diaphania pulverulentalis (Hamp.) in mulberry. J. Biopestic. 3 (1), 354.

    Google Scholar 

  64. S. Marimuthu, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, A. V. Kirthi, C. Jayaseelan, and C. Kamaraj (2011). Evaluation of green synthesized silver nanoparticles against parasites. Parasitol. Res. 108 (6), 1541–1549.

    Article  PubMed  Google Scholar 

  65. T. Manimegalai, K. Raguvaran, M. Kalpana, and R. Maheswaran (2020). Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ. Sci. Pollut. Res. 27–34, 43103–43116.

    Article  CAS  Google Scholar 

  66. S. K. Mirhaghparast, A. Zibaee, J. Hajizadeh, and S. Ramzi (2020). Toxicity and physiological effects of the tea seed saponin on Helicoverpa armigera. Biocatal. Agric. Biotechnol. 25, 101597.

    Article  Google Scholar 

  67. M. Roni, K. Murugan, C. Panneerselvam, J. Subramaniam, M. Nicoletti, P. Madhiyazhagan, D. Dinesh, U. Suresh, H. F. Khater, H. Wei, A. Canale, A. A. Alarfaj, M. A. Munusamy, A. Higuchi, and G. Benelli (2015). Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf. 121, 31–38.

    Article  CAS  PubMed  Google Scholar 

  68. G. Benelli (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res. 115 (1), 23–34.

    Article  PubMed  Google Scholar 

  69. A. S. Kandagal and M. C. Khetagoudar (2013). Study on larvicidal activity of weed extracts against Spodoptera litura. J. Environ. Biol. 34 (2), 253–257.

    PubMed  Google Scholar 

  70. S. Kanthammal, A. Jebanesan, K. Kovendan, J. Subramaniam, and M. Vijay (2018). Novel insecticides of Syzygium cumini fabricated silver nanoparticles against filariasis, malaria, and dengue vector mosquitoes. Int. J. Mosq. Res. 5 (5), 95–106.

    Google Scholar 

  71. M. Baranitharan, S. Alarifi, S. Alkahtani, D. Ali, K. Elumalai, J. Pandiyan, K. Krishnappa, R. Mohan, and M. Govindarajan (2020). Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: an efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi J. Biol. Sci. 28 (1), 148–156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. U. Suresh, K. Murugan, C. Panneerselvam, R. Rajaganesh, M. Roni, A. T. Aziz, H. A. N. Al-Aoh, S. Trivedi, H. Rehman, S. Kumar, A. Higuchi, A. Canale, and G. Benelli (2018). Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Biocatal. Agric. Biotechnol. 101, 225–235.

    CAS  Google Scholar 

  73. A. A. Buhroo, G. Nisa, S. Asrafuzzaman, R. Prasad, R. Rasheed, and A. Bhattacharyya (2017). Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J. Plant Prot. Res. 57 (2), 194–200.

    Article  CAS  Google Scholar 

  74. J. Yasur and P. U. Rani (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124, 92–102.

    Article  CAS  PubMed  Google Scholar 

  75. H. A. Ammar and E. M. Abd-ElAzeem (2020). Novel treatment of gelatin-copper bio-nanoparticles as a management method against the spiny bollworm, Earias insulana, (Boisd.) (Lepidoptera: Noctuidae) in comparison studies with the uncoated nanoparticles. Inorg. Nano-Met. Chem. https://doi.org/10.1080/24701556.2020.1786403.

    Article  Google Scholar 

  76. K. Baskar, R. Maheswaran, and S. Ignacimuthu (2012). Bioefficacy of Ceasalpinia bonduc (L.) Roxb. against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Arch. Phytopathol. Plant Prot. 45 (10), 1127–1137.

    Article  Google Scholar 

  77. K. Baskar, R. Maheswaran, M. Pavunraj, S. M. Packiam, S. Ignacimuthu, V. Duraipandiyan, and G. Benelli (2018). Toxicity and antifeedant activity of Caesalpinia bonduc (L.) Roxb. (Caesalpiniaceae) extracts and fractions against the cotton bollworm Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). Physiol. Mol. Plant Pathol. 101, 69–74.

    Article  CAS  Google Scholar 

  78. K. Balaraju, R. Maheswaran, P. Agastian, and S. Ignacimuthu (2009). Egg hatchability and larvicidal activity of Swertia chirata Buch.-Hams. ex Wall. against Aedes aegypti L. and Culex quinquefasciatus Say. Indian J. Sci. Technol. 2, 46–49.

    Article  CAS  Google Scholar 

  79. L. D. Amarasinghe, P. A. S. R. Wickramarachchi, A. A. A. U. Aberathna, W. S. Sithara, and C. R. De Silva (2020). Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon 6 (6), 04322.

    Article  Google Scholar 

  80. R. Ishwarya, B. Vaseeharan, R. Anuradha, R. Rekha, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J. Photochem. Photobiol. B 174, 133–143.

    Article  CAS  PubMed  Google Scholar 

  81. M. Ahamed, M. Karns, M. Goodson, J. Rowe, S. M. Hussain, J. J. Schlager, and Y. Hong (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233 (3), 404–410.

    Article  CAS  PubMed  Google Scholar 

  82. K. Murugan, C. Panneerselvam, C. M. Samidoss, P. Madhiyazhagan, U. Suresh, M. Roni, B. Chandramohan, J. Subramaniam, D. Dinesh, R. Rajaganesh, M. Paulpandi, H. Wei, A. T. Aziz, M. S. Alsalhi, S. Devanesan, M. Nicoletti, R. Pavela, A. Canale, and G. Benelli (2016). In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res. Vet. Sci. 106, 14–22.

    Article  PubMed  Google Scholar 

  83. B. Morejón, F. Pilaquinga, F. Domenech, D. Ganchala, A. Debut, and M. Neira (2018). Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J. Nanotechnol. https://doi.org/10.1155/2018/6917938.

    Article  Google Scholar 

  84. N. Sutthanont, S. Attrapadung, and S. Nuchprayoon (2019). Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 10 (1), 27. https://doi.org/10.3390/insects10010027.

    Article  PubMed Central  Google Scholar 

  85. K. Kovendan, S. Arivoli, R. Maheshwaran, K. Baskar, and S. Vincent (2012). Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 111 (3), 1025–1035.

    Article  PubMed  Google Scholar 

  86. K. Chinnaperumal, B. Govindasamy, D. Paramasivam, A. Dilipkumar, A. Dhayalan, A. Vadivel, K. Sengodan, and P. Pachiappan (2018). Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pestic. Biochem. Phys. 149, 26–36.

    Article  CAS  Google Scholar 

  87. E. Parthiban, M. Ramachandran, M. Jayakumar, and R. Ramanibai (2019). Biocompatible green synthesized silver nanoparticles impact on insecticides resistant developing enzymes of dengue transmitted mosquito vector. SN Appl. Sci. 1 (10), 1282.

    Article  CAS  Google Scholar 

  88. V. Sujitha, K. Murugan, D. Dinesh, A. Pandiyan, R. Aruliah, J. S. Hwang, K. Kalimuthu, C. Panneerselvam, A. Higuchi, S. Kumar, and A. A. Alarfaj (2017). Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat. Toxicol. 188, 100–108.

    Article  CAS  PubMed  Google Scholar 

  89. P. Manjula, K. Lalitha, G. Vengateswari, J. Patil, S. S. Nathan, and M. S. Shivakumar (2020). Effect of Manihot esculenta (Crantz) leaf extracts on antioxidant and immune system of Spodoptera litura (Lepidoptera: Noctuidae). Biocatal. Agric. Biotechnol. 23, 101476.

    Article  Google Scholar 

  90. M. Bilal, C. Xu, L. Cao, P. Zhao, C. Cao, F. Li, and Q. Huang (2020). Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Manag. Sci. https://doi.org/10.1002/ps.5924.

    Article  PubMed  Google Scholar 

  91. D. Stone, P. Jepson, and R. Laskowski (2002). Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution. Comp. Biochem. Physiol. C 132 (1), 105–112.

    Google Scholar 

  92. E. Zvereva, V. Serebrov, V. Glupov, and I. Dubovskiy (2003). Activity and heavy metal resistance of non-specific esterases in leaf beetle Chrysomela lapponica from polluted and unpolluted habitats. Comp. Biochem. Physiol. C 135, 383–391.

    CAS  Google Scholar 

  93. M. Fiaz, L. C. Martínez, Costa M. Da Silva, J. F. S. Cossolin, A. Plata-Rueda, W. G. Gonçalves, A. E. G. Sant’Ana, J. C. Zanuncio, and J. E. Serrão (2018). Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 156, 1–8.

    Article  CAS  PubMed  Google Scholar 

  94. K. Kalimuthu, C. Panneerselvam, C. Chou, L. C. Tseng, K. Murugan, K. H. Tsai, A. A. Alarfaj, A. Higuchi, A. Canale, J. S. Hwang, and G. Benelli (2017). Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf. Environ. 109, 82–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (Dr. Rajan Maheswaran/Principal Investigator/UGC Major Research Project, File No. MRP-MAJOR-ZOOL-2013-21921) is thankful to the University Grants Commission (UGC), New Delhi, India for providing financial support and Periyar University, Salem, Tamil Nadu, India for providing laboratory support.

Author information

Authors and Affiliations

Authors

Contributions

TM and KR have contributed equally to this work (Investigation, Writing—original draft). MK—Review & editing, RM: Conceptualization, Supervision.

Corresponding author

Correspondence to Rajan Maheswaran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimegalai, T., Raguvaran, K., Kalpana, M. et al. Facile Synthesis of Silver Nanoparticles Using Vernonia anthelmintica (L.) Willd. and Their Toxicity Against Spodoptera litura (Fab.), Helicoverpa armigera (Hüb.), Aedes aegypti Linn. and Culex quinquefasciatus Say. J Clust Sci 33, 2287–2303 (2022). https://doi.org/10.1007/s10876-021-02151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02151-z

Keywords

Navigation