Skip to main content

Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi

  • Chapter
  • First Online:
Nano-Antimicrobials

Abstract

The antimicrobial activity of silver and copper nanoparticles is widely reported and is linked with ions that leach out from these nanoparticles. The activity is further enhanced due to their small size and high surface area to volume ratio which allows them to interact closely with microbial membranes. Most studies on antibacterial effects have been limited to one or a few strains and comparison across studies becomes difficult due to differences in the size and other characteristics of the nanoparticles and due to differences in the protocols followed in the various studies. The sensitivity in response to silver nanoparticles is seen to vary widely across various strains of Escherichia coli and Staphylococcus aureus. Most strains typically show greater sensitivity to silver compared to copper nanoparticles. Antifungal activity of silver nanoparticles has been found to be comparable to commercially available antifungal agents. Nanoparticles embedded/immobilized on supports may be better utilized for applications such as water disinfection. Such systems can promote a continuous release of Ag+ and Cu2+ ions in solution and thus promote disinfection while ensuring a low enough concentration to avoid deleterious effect on humans and other organisms in the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res Taiwan 16:1–10. doi:10.1007/s10965-008-9196-0

    Google Scholar 

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410. doi:10.1016/j.taap.2008.09.015

    Google Scholar 

  • An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989. doi:10.1016/j.msec.2009.03.015

    Google Scholar 

  • Asavavisithchai S, Oonpraderm A, Rungsardthong Ruktanonchai U (2010) The antimicrobial effect of open-cell silver foams. J Mater Sci: Mater Med 21:1329–1334. doi:10.1007/s10856-009-3969-9

    Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8. doi:10.1088/0957-4484/19/25/255102

    Google Scholar 

  • Asharani PV, Kah Mun GL, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi: 10.1021/nn800596w

    Google Scholar 

  • Barbucci R, Leone G, Magnani A, Montanaro L, Arciola CR, Peluso G, Petillo O (2002) Cu2+ and Ag1+ complexes with a hyaluron-based hydrogel, J Mater Chem 12:3084–3092. doi:10.1039/b205320a

    Google Scholar 

  • Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis, J Bacteriol 141:876–887.

    Google Scholar 

  • Borkow G, Gabbay J (2009) Copper, An ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278.

    Google Scholar 

  • Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 23:887–892. doi:10.1016/s0142-9612(01)00198-3

    Google Scholar 

  • Brown IG (1993) Metal–ion implantation for large scale surface modification. J Vac Sci Technol A 11:1480–1485.

    Google Scholar 

  • Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801. doi:10.1007/s11671-009-9316-8

    Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960. doi:10.1016/j.electacta.2005.04.071

    Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Advan Technol 16:600–607. doi:10.1002/pat.630

    Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma surface modification of biomaterials. Mater Sci Eng Res 36:143–206. doi:10.1016/s0927-796x(02)00004-9

    Google Scholar 

  • Chudasama B, Vala, AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2: 955–965. doi:10.1007/s12274-009-9098-4

    Google Scholar 

  • Chudasama B, Vala,AK, Andhariya N, Mehta RV, Upadhyay RV (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12:1677–1685. doi: 10.1007/s11051-009-9845-1

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Giorgio P (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419. doi:10.1063/1.1794381

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Giorgio Zambonin P, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem Mater 17:5255–5262. doi:10.1021/cm0505244

    Google Scholar 

  • Costa CS, Ronconi JVV, Daufenbach JF, Gonçalves CL, Rezin GT, Streck EL, Marques da Silva PM (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342:51–56. doi: 10.1007/s11010-010-0467-9

    Google Scholar 

  • Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501. doi:10.1021/nl025547l

    Google Scholar 

  • Dallas P, Tucek J, Jancik D, Kolar M, Panacek A, Zboril R (2010) Magnetically controllable silver nanocomposite with multifunctional phosphotriazine matrix and high antimicrobial activity. Adv Funct Mater 20:2347–2354. doi:10.1002/adfm.200902370

    Google Scholar 

  • Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–585. doi:10.1093/annhyg/mei019

    Google Scholar 

  • Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9: 807–820. doi:10.3390/ijms9050807

    Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976. doi:10.1128/aem.01658-08

    Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009a) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20:085103. doi:10.1088/0957-4484/20/8/085103

    Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009b) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701. doi:10.1088/0957-4484/20/50/505701

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine-NBM 6:103–109. doi:10.1016/j.nano.2009.04.006

    Google Scholar 

  • Falletta E, Bonini M, Fratini E, Nostro AL, Pesavento G, Becheri A, Nostro PL, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure an applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:10.1021/jp8035814

    Google Scholar 

  • Fernandez EJ, Garcıa-Barrasa J, Laguna A, Lopez-de-Luzuriaga1 JM, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology 19:185602. doi:10.1088/0957-4484/19/18/185602

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-NBM 5:382–386. doi:10.1016/j.nano.2009.06.005

    Google Scholar 

  • Gittard SD, Hojo D, Hyde GK, Scarel G, Narayan RJ, Parsons GN (2009) Antifungal textiles formed using silver deposition in supercritical carbon dioxide. J Mater Eng Perform 19:368–373. doi:10.1007/s11665-009-9514-7

    Google Scholar 

  • Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS., Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328. doi: 10.1021/la060661v

    Google Scholar 

  • Grunlan JC, Choi JK, Lin A (2005) Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6:1149–1153. Doi: 10.1021/bm049528c

    Google Scholar 

  • Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine-NBM 6:681–688. doi:10.1016/j.nano.2010.02.001

    Google Scholar 

  • Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875. doi:10.1016/j.biomaterials.2007.02.033

    Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AJP, Tapia-Pérez H, Martínez Castañón G (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine-NBM 4:237–240. doi:10.1016/j.nano.2008.04.005

    Google Scholar 

  • Holtz RD, Filho AGS, Brocchi M, Martins D, Duran, N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102. doi: 10.1088/0957-4484/21/18/185102

    Google Scholar 

  • Ilic V, Saponjic Z, Vodnik V, Molina R, Dimitrijevic S, Jovancic P, Nedeljkovic J, Radetic M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990. doi:10.1007/s10853-009-3547-z

    Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol Pharmaceutics 6:1388–1401. doi:10.1021/mp900056g

    Google Scholar 

  • Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907. doi:10.1002/marc.200500569

    Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46-M52. doi:10.1111/j.1750-3841.2008.01013.x

    Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. doi:10.1111/j.1574-6968.2007.01012.x

    Google Scholar 

  • Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28:59–89. doi:10.1016/S0079-6700(02)00032-1

    Google Scholar 

  • Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80. doi:10.1006/abbi.2000.1996

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 3:95–101. doi:10.1016/j.nano.2006.12.001

    Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechn 18:1482–1484.

    Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009a) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235–242. doi: 10.1007/s10534-008-9159-2

    Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009b) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechn 19:760–764.

    Google Scholar 

  • Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53:621–631 doi:10.1002/1097-4636(2000)53:6<621::aid-jbm2>3.0.co;2-q

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanoparticles in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851. doi:10.1897/08-090.1

    Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine: NBM 6:570–574. doi:10.1016/j.nano.2009.12.002

    Google Scholar 

  • Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681. doi: 10.1021/bm800574x

    Google Scholar 

  • Lee S, Lee J, Kim K, Sim SJ, Gu MB, Yi J, Lee J (2009) Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnol Bioproc Eng 4:490–495. doi: 10.1007/s12257-008-0254-6

    Google Scholar 

  • Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917. doi: 10.1088/0957-4484/16/9/082

    Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi:10.1016/j.watres.2008.08.015

    Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. doi: 10.1007/s00253-009-2159-5

    Google Scholar 

  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141. doi: 10.1007/s10534-010-9381-6

    Google Scholar 

  • Lin YE, Vidic RD, Stout JE, Mccartney CA, Yu VL (1998) Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32:1997–2000.doi:10.1016/S0043-1354(97)00460-0

    Google Scholar 

  • Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam PK, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi: 10.1021/pr0504079

    Google Scholar 

  • Lukhele LP, Mamba BB, Momba MNB, Krause RWM (2010) Water disinfection using novel cyclodextrin polyurethane containing silver nanoparticles supported on carbon nanotubes. J Appl Polym Sci 10:65–70. doi:10.3923/jas.2010.65.70

    Google Scholar 

  • Mahltig B, Gutmann E, Reibold M, Meyer DC, Böttcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214.

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715. doi:10.1002/adfm.200500029

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Google Scholar 

  • Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Poly Sci 113:757–766. doi:10.1002/app.29890

    Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 25:376–380.

    Google Scholar 

  • Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. doi:10.1002/marc.200600297

    Google Scholar 

  • Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126. doi:10.1002/jbm.b.31747

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technol 101:8772–8776. doi:10.1016/j.biortech.2010.06.065

    Google Scholar 

  • Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1:233–239.

    Google Scholar 

  • Oya A, Yoishida S, Abe Y, Iizuka T, Makiyama N (1993) Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon 31:71–73. doi:10.1016/0008-6223(93)90157-6

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:172–1720. doi:10.1128/aem.02218-06

    Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Shrma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h

    Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 31:6333–6340. doi:10.1016/j.biomaterials.2009.07.065

    Google Scholar 

  • Pape HL, Sarena SF, Contini P, Devillers C, Maftah A, Laprat P (2002) Evaluation of the antimicrobial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954. doi:10.1016/S0008-6223(02)00246-4

    Google Scholar 

  • Pich A, Karak,A, Lu Y, Ghosh AK, Adler H (2006) Preparation of hybrid microgels functionalized by silver nanoparticles. Macromol Rapid Commun 27:344–350. doi: 10.1002/marc.200500761

    Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Res 339:2693–2700.doi:10.1016/j.carres.2004.09.007

    Google Scholar 

  • Rai M, Yadav A Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi:10.1016/j.biotechadv.2008.09.002

    Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microbiol 60:75–80. doi:10.1007/s13213-010-0015-6

    Google Scholar 

  • Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008a) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. doi:10.1016/j.actbio.2007.11.006

    Google Scholar 

  • Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008b) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232:145–156. doi:10.1016/j.desal.2007.08.023

    Google Scholar 

  • Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321:21–46. doi:10.1016/j.scitotenv.2003.05.001

    Google Scholar 

  • Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine NBM 5:282–286. doi:10.1016/j.nano.2009.01.002

    Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surf B 77:214–218. doi:10.1016/j.colsurfb.2010.01.026

    Google Scholar 

  • Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26:4419–4426. doi:10.1016/j.poly.2007.05.056

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96.

    Google Scholar 

  • Sharma V (2010) Bactericidal action of chemically treated silver surfaces for water disinfection. M Tech. Thesis, IIT Bombay, Mumbai, India.

    Google Scholar 

  • Sheikh FA, Kanjwal MA, Saran S, Chung WJ, Kim H (2011) Polyurethane nanofibers containing copper nanoparticles as future materials. Appl Surf Sci 257:3020–3026. doi:10.1016/j.apsusc.2010.10.110

    Google Scholar 

  • Siva Kumar V, Nagaraja BM, Shashikala V, Padmasri AH, Madhavendra SS, Raju BD, Rama Rao KS (2004) Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J Mol Cat-A Chem 223:313–319. doi:10.1016/j.molcata.2003.09.047

    Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:41–353. doi:10.1016/S0168-6445(03)00047-0

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J colloid Interf Sci 275:177–182. doi:10.1016/j.jcis.2004.02.012

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Bio Med 18:321–336. doi:10.1016/0891-5849(94)00159-h

    Google Scholar 

  • Su W, Wei SS, Hu SQ, Tang JX (2011) Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol. J Text Inst 102:150–156. doi:0.1080/00405001003603098

    Google Scholar 

  • Uyama Y, Kato K, Ikada Y (1998) Surface modification of polymers by grafting. Adv Poly Sci 137:1–39. doi:10.1007/3-540-69685-7_1

    Google Scholar 

  • Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermo responsive nanoparticle-hydrogel composites. Adv Mater 16:1074–1079. doi: 10.1002/adma.200306516

    Google Scholar 

  • Williams DN, Ehrman SH, Holoman TRP (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4:3. doi:10.1186/1477-3155-4-3

    Google Scholar 

  • WHO (2006) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva.

    Google Scholar 

  • Wu Y, Jia W, An Q, Liu Y, Chen J, Li G (2009) Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology 20:245101. doi:10.1088/0957-4484/20/24/245101

    Google Scholar 

  • Yoon KY, Byeon JH, Park CW, Hwang J (2007) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers, Environ Sci Technol 42: 1251–1255. doi:10.1021/es0720199

    Google Scholar 

  • Yu DG, Lin WC, Yang MC (2007) Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayers. Bioconjugate Chem 18:1521–1529. doi:10.1021/bc060098s

    Google Scholar 

  • Yuan W, Ji J, Fu J, Shen J (2007) A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J Biomed Mater Res B: Appl Biomater 16:556–563. doi:10.1002/jbm.b.30979

    Google Scholar 

  • Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohyd Polym 53:439–446. doi:10.1016/S0144-8617(03)00103-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna Mukherji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Mukherji, S., Ruparelia, J., Agnihotri, S. (2012). Antimicrobial Activity of Silver and Copper Nanoparticles: Variation in Sensitivity Across Various Strains of Bacteria and Fungi. In: Cioffi, N., Rai, M. (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24428-5_8

Download citation

Publish with us

Policies and ethics