Skip to main content
Log in

Penicillium chrysogenum-Mediated Mycogenic Synthesis of Copper Oxide Nanoparticles Using Gamma Rays for In Vitro Antimicrobial Activity Against Some Plant Pathogens

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the ability of specific fungus to biosynthesize copper oxide nanoparticles (CuO NPs) by the aid of gamma rays and evaluate its performance as a unique antimicrobial agent in the agricultural fields. CuO NPs were synthesized by Penicillium chrysogenum filtrate utilizing copper sulfate at various gamma rays doses. The identification was performed by UV-Vis., FTIR, XRD, DLS, TEM, SEM, EDX and mapping images. Antimicrobial potential of CuO NPs against selected crop pathogenic microbes had been estimated. From the results, the preferred doses applied for CuO NPs synthesis was recorded at 50.0 kGy. The proposed reaction mechanism was studied. TEM image with DLS analysis confirmed the morphology of CuO NPs possesses a mean diameter at 9.70 nm. CuO NPs exhibited a maximum antifungal activity against Fusarium oxysporum (37.0 mm ZOI) followed by Alternaria solani (28.0 mm ZOI), and Aspergillus niger (26.5 mm ZOI). On the other hand, it was active as antibacterial agent against Ralstonia solanacearum (22.0 mm ZOI) and Erwinia amylovora (19.0 mm ZOI). Therefore, due to these outstanding properties, CuO NPs may be utilized as the significant antimicrobial agents in the agricultural area to restrain the plant pathogenic fungi and bacteria from proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Abd Elkodous, et al. (2019). J. Clust. Sci.30, (3), 531–540.

    CAS  Google Scholar 

  2. K. Shameli, et al. (2012). Molecules17, (7), 8506–8517.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Pugazhendhi, et al. (2018). Int. J. Pharm.539, (1), 104–111.

    CAS  PubMed  Google Scholar 

  4. M. Abd Elkodous, et al. (2019). Colloids Surf. B Biointerfaces180, 411–428.

    CAS  PubMed  Google Scholar 

  5. M. I. A. Abdel Maksoud, et al. (2018). Mater. Sci. Eng. C92, 644–656.

    CAS  Google Scholar 

  6. M. A. Elkodous, et al. (2019). J. Mater. Sci. Mater. Electron.30, (9), 8312–8328.

    CAS  Google Scholar 

  7. A. A. Ponce and K. J. Klabunde (2005). J. Mol. Catal. A Chem.225, (1), 1–6.

    CAS  Google Scholar 

  8. M. Raffi, et al. (2010). Ann. Microbiol.60, (1), 75–80.

    CAS  Google Scholar 

  9. A. Pugazhendhi, et al. (2019). J. Photochem. Photobiol. B Biol.190, 86–97.

    CAS  Google Scholar 

  10. A. Ashour, et al. (2018). Particuology40, 141–151.

    CAS  Google Scholar 

  11. G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol.29, (11), 2616–2625.

    CAS  Google Scholar 

  12. K. L. Kelly, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment (ACS Publications, Washington, 2003).

    Google Scholar 

  13. D. Longano, et al. (2012) Synthesis and antimicrobial activity of copper nanomaterials. In: Cioffi N, Rai M (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg, pp 85–117. https://doi.org/10.1007/978-3-642-24428-5_3.

    Chapter  Google Scholar 

  14. R. G. Saratale, et al. (2018). J. Environ. Manag.223, 1086–1097.

    CAS  Google Scholar 

  15. N. A. Dhas, C. P. Raj, and A. Gedanken (1998). Chem. Mater.10, (5), 1446–1452.

    CAS  Google Scholar 

  16. M.-S. Yeh, et al. (1999). J. Phys. Chem. B103, (33), 6851–6857.

    CAS  Google Scholar 

  17. M. Yang and J.-J. Zhu (2003). J. Cryst. Growth256, (1–2), 134–138.

    CAS  Google Scholar 

  18. J. Cheon, J. Lee, and J. Kim (2012). Thin Solid Films520, (7), 2639–2643.

    CAS  Google Scholar 

  19. P. Kazakevich, et al. (2006). Appl. Surf. Sci.252, (13), 4373–4380.

    CAS  Google Scholar 

  20. G. Granata, et al. (2016). J. Nanoparticle Res.18, (5), 133.

    Google Scholar 

  21. N. Asmathunisha and K. Kathiresan (2013). Colloids Surf. B Biointerfaces103, 283–287.

    CAS  PubMed  Google Scholar 

  22. C.Y. Ho, Y.H. Tsai and F.M. Sui (2010). Adv. Mater. Res.126–128, 952–956. https://doi.org/10.4028/www.scientific.net/AMR.126-128.952.

    Article  CAS  Google Scholar 

  23. J. B. Fathima, et al. (2018). J. Mol. Liquids260, 1–8.

    CAS  Google Scholar 

  24. S. N. Sinha, et al. (2015). Appl. Nanosci.5, (6), 703–709.

    CAS  Google Scholar 

  25. Z. Jiang, et al. (2019). Life Sci.220, 156–161.

    CAS  PubMed  Google Scholar 

  26. N. Cioffi, et al. (2005). Anal. Bioanal. Chem.381, (3), 607–616.

    CAS  PubMed  Google Scholar 

  27. S. Vasantharaj, et al. (2019). J. Photochem. Photobiol. B Biol.191, 143–149.

    CAS  Google Scholar 

  28. S. Sathiyavimal, et al. (2018). J. Photochem. Photobiol. B Biol.188, 126–134.

    CAS  Google Scholar 

  29. F. M. Mosallam, et al. (2018). Microb. Pathog.122, 108–116.

    CAS  PubMed  Google Scholar 

  30. A. I. El-Batal, et al. (2019). J. Clust. Sci.30, (3), 687–705.

    CAS  Google Scholar 

  31. M. A. El-Bramawy (2006). Plant Prot. Sci. Prague42, (3), 99.

    Google Scholar 

  32. M. A. Khiyami, et al. (2014). Biotechnol. Biotechnol. Equip.28, (5), 775–785.

    PubMed  PubMed Central  Google Scholar 

  33. G. M. Mohamed, et al. (2010). J. Agric. Environ. Sci.9, (1), 1–23.

    Google Scholar 

  34. N. Hassan, et al. (2014). Mycobiology42, (4), 376–384.

    PubMed  PubMed Central  Google Scholar 

  35. M. A. Hassan and K. A. Abo-Elyousr (2013). Arch. Phytopathol. Plant Prot.46, (16), 1904–1918.

    Google Scholar 

  36. N. M. Hassanein, et al. (2010). Phytopathol. Mediterr.49, (2), 143–151.

    Google Scholar 

  37. A. El-Batal, et al. (2016). J. Chem. Pharm. Res.8, (4), 934–951.

    CAS  Google Scholar 

  38. A.-W. A. Ismail, et al. (2016). Br. Biotechnol. J.12, (3), 1.

    Google Scholar 

  39. V. Kumar, G. Singh, and A. Tyagi (2017). Int. J. Curr. Microbiol. Appl. Sci6, (5), 2343–2350.

    CAS  Google Scholar 

  40. M. A. Hegazi and G. A. El-Kot (2010). J. Agric. Sci.2, (4), 221.

    Google Scholar 

  41. P. Khalikar, G. Jagtap, and P. Sontakke (2011). Indian Phytopathol.64, (3), 286.

    CAS  Google Scholar 

  42. N. Akhtar, T. Anjum, and R. Jabeen (2013). Pak. Int. J. Agric. Biol.15, 1283–1288.

    CAS  Google Scholar 

  43. S. L. Leong, A. D. Hocking, and J. Pitt (2004). Aust. J. Grape Wine Res.10, (1), 83–88.

    Google Scholar 

  44. M. Abo-El-Dahab, et al. (1982). Phytopathol. Mediterr.1983, 168–170.

    Google Scholar 

  45. M. S. Attia, et al. (2019). J. Clust. Sci.30, (4), 919–935.

    CAS  Google Scholar 

  46. S. Kabeil, et al. (2008). World J. Agric. Sci.4, 803–810.

    Google Scholar 

  47. S. Kabeil, et al. (2008). Am. Eurasian J. Agric. Environ. Sci4, 44–54.

    Google Scholar 

  48. M. I. A. Abdel Maksoud, et al. (2019). J. Sol-Gel Sci. Technol.90, (3), 631–642.

    CAS  Google Scholar 

  49. A. Baraka, et al. (2017). Chem. Pap.71, (11), 2271–2281.

    CAS  Google Scholar 

  50. A. I. El-Batal, et al. (2019). J. Clust. Sci.30, (4), 947–964.

    CAS  Google Scholar 

  51. J. Ramyadevi, et al. (2012). Mater. Lett.71, 114–116.

    CAS  Google Scholar 

  52. M. I. A. A. Maksoud, et al. (2019). Microb. Pathog.127, 144–158.

    CAS  PubMed  Google Scholar 

  53. A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci.29, (6), 1003–1015.

    CAS  Google Scholar 

  54. A. I. El-Batal, et al. (2017). J. Clust. Sci.28, (3), 1083–1112.

    CAS  Google Scholar 

  55. A. El-Batal, et al. (2014). Br. J. Pharm. Res.4, (11), 1341.

    Google Scholar 

  56. L. Alrehaily, et al. (2013). Phys. Chem. Chem. Phys.15, (1), 98–107.

    CAS  PubMed  Google Scholar 

  57. A. I. El-Batal, et al. (2017). J. Photochem. Photobiol. B Biol.173, 120–139.

    CAS  Google Scholar 

  58. A. I. El-Batal, et al. (2018). Microb. Pathog.118, 159–169.

    CAS  PubMed  Google Scholar 

  59. X. Zhu, et al. (2012). Langmuir28, (40), 14461–14469.

    CAS  PubMed  Google Scholar 

  60. D. Das, et al. (2013). Colloids Surf. B Biointerfaces101, 430–433.

    CAS  PubMed  Google Scholar 

  61. F. Rouxel, C. Alabouvette, and J. Louvet (1977). Ann. Phytopothol.9, (2), 183–192.

    Google Scholar 

  62. Zafar, M.B., et al. (2017) Fairness constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259.

  63. J. Olchowik, et al. (2017). Forests8, (9), 310.

    Google Scholar 

  64. P. V. Viet, et al. (2016). J. Nanomater.2016, 6.

    Google Scholar 

  65. K. Bramhanwade, et al. (2016). Environ. Chem. Lett.14, (2), 229–235.

    CAS  Google Scholar 

  66. Y. He, et al. (2016). J. Nanobiotechnol.14, (1), 54.

    Google Scholar 

  67. M. Hildebrand, P. Aldridge, and K. Geider (2006). Mol. Genet. Genom.275, (3), 310–319.

    CAS  Google Scholar 

  68. K. Vrancken, et al. (2013). Microbiology159, (5), 823–832.

    CAS  PubMed  Google Scholar 

  69. J. P. Ruparelia, et al. (2008). Acta Biomater.4, (3), 707–716.

    CAS  PubMed  Google Scholar 

  70. A. Satyvaldiev, et al. (2018). IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2018). https://doi.org/10.1088/1757-899X/302/1/012075.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/ Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed gobara (Military Technical College, Cairo, Egypt), Dr. Mohamed S. Attia (Plant Pathology Lab., Botany and Microbiology Dep., Faculty of Science, Al-Azhar University, Cairo, Egypt) and Zeiss microscope team in Cairo, for their invaluable advice during this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gharieb S. El-Sayyad or Rasha M. Fathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human Participation and/or Animals

This article does not contain any studies with human and/or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Batal, A.I., El-Sayyad, G.S., Mosallam, F.M. et al. Penicillium chrysogenum-Mediated Mycogenic Synthesis of Copper Oxide Nanoparticles Using Gamma Rays for In Vitro Antimicrobial Activity Against Some Plant Pathogens. J Clust Sci 31, 79–90 (2020). https://doi.org/10.1007/s10876-019-01619-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01619-3

Keywords

Navigation