Skip to main content

Advertisement

Log in

Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

β-amyloid (Aβ) deposition, in the form of plaques and amyloid angiopathy, and hyper-phosphorylated tau deposition forming neurofibrillary tangles, dystrophic neurites around β-amyloid plaques and neuropil threads, are neuropathological hallmarks of Alzheimer’s disease (AD) that accumulate in the brain with disease progression. These changes are accompanied by progressive loss of synapses and nerve cell death. Progressive cognitive impairment and dementia are the main neurological deficits. In addition, there is cumulative evidence demonstrating other metabolic disturbances that impair cell function and hamper neuron viability. The main components of the mitochondria are altered: complex IV of the respiratory chain is reduced; complex V which metabolizes ADP to form ATP is oxidatively damaged and functionally altered; and voltage-dependent anion channel VDAC, a major component of the outer mitochondrial membrane that regulates ion fluxes, is damaged as a result of oxidative stress. Mitochondria are a major source of reactive oxygen species that promote oxidative damage to DNA, RNA, proteins and lipids. Protein targets of oxidative damage are, among others, several enzymatic components of the glycolysis, lipid metabolism and cycle of the citric acid that fuel oxidative phosphorylation, mitochondrial respiration and energy production. The lipid composition of lipid rafts, key membrane specializations that facilitate the transfer of substrates, and protein-protein and lipid-protein interactions, is altered as a result of the abnormally low levels of n-3 long chain polyunsaturated fatty acids (mainly docosahexaenoic acid) that increase viscosity and augment energy consumption. Abnormal lipid raft composition may also modify the activity of key enzymes that modulate the cleavage of the amyloid precursor protein to form toxic Aβ. This is further complicated by the disruption of the complex VDAC with estrogen receptor α at the caveolae which participates, under physiological conditions, in the protection against β-amyloid. Together, all these alterations converge in reduced energy production and increased energy demands in altered cells. Cell exhaustion is suggested as being a determining element to interpret impaired neuron function, reduced molecular turnover, and enhanced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksenov M, Aksenova M, Butterfield DA, Markesbery DW (2000) J Neurochem 74:2520–2527

    Article  CAS  Google Scholar 

  • Anderson RG (1998) Annu Rev Biochem 67:199–225

    Article  CAS  Google Scholar 

  • Bahamonde MI, Valverde MA (2003) Pflugers Arch 446:309–313

    CAS  Google Scholar 

  • Baker MA, Lane DJ, Ly JD, De Pinto V, Lawen A (2004) J Biol Chem 279:4811–4819

    Article  CAS  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214

    Article  CAS  Google Scholar 

  • Bàthori G, Parolini I, Tombola F, Szabò I, Messina A, Oliva M, De Pinto V, Lisanti M, Sargiacomo M, Zoratti M (1999) J Biol Chem 274:29607–29612

    Article  Google Scholar 

  • Blass JP (2000) Ann N Y Acad Sci 924:170–183

    CAS  Google Scholar 

  • Braak H, Braak E, Peter J, Morrison JH (1999) Cerebral cortex, vol 14, Neurodegenerative and age-related changes in structure and function of cerebral cortex. In: Peters A, Morrison JH (eds). Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp 475–512

  • Brown DA, London E (2000) J Biol Chem 275:17221–17224

    Article  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001) Mech Ageing Dev 122:945–962

    Article  CAS  Google Scholar 

  • Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Neurobiol Dis 22:223–232

    Article  CAS  Google Scholar 

  • Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) J Neurochem 80:91–100

    Article  CAS  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002a) Free Radic Biol Med 33:562–571

    Article  CAS  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002b) J Neurochem 82:1524–1532

    Article  CAS  Google Scholar 

  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) J Neurochem 85:1394–1401

    Article  CAS  Google Scholar 

  • Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME, Perry G, Smith MA (2002) J Neurosci Res 70:357–360

    Article  CAS  Google Scholar 

  • Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S, Lippa C, Nixon RA (1995) Neuron 14:671–680

    Article  CAS  Google Scholar 

  • Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M, Bernardi P, Rasola A (2008) PLoS One 3:e1852

    Article  CAS  Google Scholar 

  • Colombini M (2007) Methods Cell Biol 80:241–260

    Article  CAS  Google Scholar 

  • Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Proc Natl Acad Sci USA 100:11735–11740

    Article  CAS  Google Scholar 

  • Cosgrove JP, Church DF, Pryor WA (1987) Lipids 22:299–304

    Article  CAS  Google Scholar 

  • Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T, Masters CL, Trounce IA (2005) J Neurosci 25:672–679

    Article  CAS  Google Scholar 

  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthvarada HK (2006) J Neurosci 26:9057–9068

    Article  CAS  Google Scholar 

  • Duyckaerts C, Dickson DW (2003) Neurodegeneration: the molecular pathology of dementia and movement disorders. In: Dickson DW (ed). ISN Neuropath, Basel, pp 47–68

  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) J Cell Biol 160:113–123

    Article  CAS  Google Scholar 

  • Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Cell Death Differ 12:1134–1140

    Article  CAS  Google Scholar 

  • Fiala JC, Feinberg M, Peters A, Barbas H (2007) Brain Struct Funct 212:195–207

    Article  Google Scholar 

  • Gibson GE, Ratan RR, Beal MF (2008) Ann NY Acad Sci vol 1147. Boston

  • Gillardon F, Rist W, Kussmaul L, Vogel J, Berg M, Danzer K, Kraut N, Hengerer B (2007) Proteomics 7:605–616

    Article  CAS  Google Scholar 

  • Halestrap AP (2009) J Mol Cell Cardiol 46:821–831

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hattori C, Asai M, Onishi H, Sasagawa N, Hashimoto Y, Saido TC, Maruyama K, Mizutani S, Ishiura S (2006) J Neurosci Res 84:912–917

    Article  CAS  Google Scholar 

  • Hayashi H, Mizuno T, Michikawa M, Haass C, Yanagisawa K (2000) Biochim Biophys Acta 1483:81–90

    CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) J Neurosci 21:3017–3023

    CAS  Google Scholar 

  • Ikezu T, Trapp BD, Song KS, Schlegel A, Lisanti MP, Okamoto T (1998) J Biol Chem 273:10485–10495

    Article  CAS  Google Scholar 

  • Juhaszova M, Wang S, Zorov DB, Nuss HB, Gleichmann M, Mattoson MP, Sollott SJ (2008) Ann N Y Acad Sci 1123:197–212

    Article  CAS  Google Scholar 

  • Kidd M (1964) Brain 87:307–320

    Article  CAS  Google Scholar 

  • Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH, Jeong SJ, Wittendorp MC, Seo JH, Choi SH, Suh YH (2002) NeuroReport 13:1989–1993

    Article  CAS  Google Scholar 

  • Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, Wilson JM, DiStefano LM, Nobrega JN (1992) J Neurochem 59:776–779

    Article  CAS  Google Scholar 

  • Korolainen MA, Auriola S, Nyman TA, Alafuzoff I, Pirttilä T (2005) Proteomic analysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiol Dis 20:858–870

    Article  CAS  Google Scholar 

  • Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttilä T (2006) Aging 27:42–53

    CAS  Google Scholar 

  • Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury PT Jr, Kosik KS (1998) Nat Med 4:730–734

    Article  CAS  Google Scholar 

  • Lemasters JJ, Holmuhamedov E (2006) Biochim Biophys Acta 1762:181–90

    CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Nature 443:787–795

    Article  CAS  Google Scholar 

  • Lowe J, Mirra S, Hyman B, Dickson DW (2008) Greenfield’s neuropathology. In: Love S, Louis DN, Ellison DW (eds). Hodder Arnold, London, pp 1031–1152

  • Luse SA, Smith KR Jr (1964) Am J Pathol 44:553–563

    CAS  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy H (2006) Hum Mol Genet 15:1437–1449

    Article  CAS  Google Scholar 

  • Mannella CA, Kinnally KW (2009) J Bioenerg Biomembr 40:149–155

    Article  CAS  Google Scholar 

  • Marín R, Ramirez CM, Gonzalez M, Gonzalez-Munoz E, Zorzano A, Camps M, Alonso R, Diaz M (2007) Mol Memb Biol 24:148–160

    Article  CAS  Google Scholar 

  • Marlow L, Cain M, Pappolla MA, Sambamurti K (2003) J Mol Neurosci 20:233–239

    Article  CAS  Google Scholar 

  • Martín V, Fabelo N, Santpere G, Puig B, Ferrer I, Díaz M (2009) J Alzh Dis (Epub ahead of print)

  • Martínez A, Portero-Otin M, Pamplona R, Ferrer I (2009) Brain Pathol, (Epub ahead of print)

  • Maurer I, Zierz S, Moller HJ (2000) Neurobiol Aging 21:455–462

    Article  CAS  Google Scholar 

  • Mello CF, Sultana R, Piroddi M, Cai J, Pierce WM, Klein JB, Butterfield DA (2007) Neuroscience 147:674–679

    Article  CAS  Google Scholar 

  • Michel V, Bakovic M (2007) Biol Cell 99:129–140

    Article  CAS  Google Scholar 

  • Moreira PI, Santos MS, Oliveira CR (2007a) Antioxid Redox Signal 9:1621–1630

    Article  CAS  Google Scholar 

  • Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007b) J Neuropathol Exp Neurol 66:525–532

    Article  CAS  Google Scholar 

  • Mutisya EM, Bowling AC, Beal MF (1994) J Neurochem 63:2179–2184

    CAS  Google Scholar 

  • Newman SF, Sultana R, Perluigi M, Coccia R, Cai J, Pierce WM, Klein JB, Turner DM, Butterfield DA (2007) J Neurosci Res 85:1506–1514

    Article  CAS  Google Scholar 

  • Nixon RA, Cataldo AM, Mathews PM (2000) Neurochem Res 9–10:1161–1172

    Article  Google Scholar 

  • Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otín M (2005) J Biol Chem 280:21522–21530

    Article  CAS  Google Scholar 

  • Pamplona R, Barja G (2007) Ageing Res Rev 6:189–210

    Article  CAS  Google Scholar 

  • Perez-Gracia E, Torrejon-Escribano B, Ferrer I (2008) Acta Neuropathol 116:261–268

    Article  CAS  Google Scholar 

  • Pike LJ (2003) J Lipid Res 44:655–667

    Article  CAS  Google Scholar 

  • Ramirez CM, Gonzalez M, Díaz M, Alonso R, Ferrer I, Santpere G, Puig B, Meyer G, Marin R (2009) Mol Cell Neurosci. Jul 10 (Epub ahead of print)

  • Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA (2008a) Neurobiol Dis 30:107–120

    Article  CAS  Google Scholar 

  • Reed TT, Pierce WM Jr, Turner DM, Markesbery WR, Butterfield DA (2008b) J Cell Mol Med. Aug 21 (Epub ahead of print)

  • Riddell DR, Christie G, Hussain I, Dingwall C (2001) Curr Biol 11:1288–1293

    Article  CAS  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2009) J Bioenerg Biomembr 40:163–170

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Israelson A, Brdiczka D, Sep SS (2006) Curr Phar Des 12:2249–2270

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Keinan N, Zaid H (2008) J Bioenerg Biomembr 40:183–191

    Article  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Nature 387:569–572

    Article  CAS  Google Scholar 

  • Starkov AA (2008) Ann N Y Acad Sci 1147:37–52

    Article  CAS  Google Scholar 

  • Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006a) Neurobiol Aging 27:1564–1576

    Article  CAS  Google Scholar 

  • Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA (2006b) Neurobiol Dis 22:76–87

    Article  CAS  Google Scholar 

  • Sultana R, Perluigi M, Butterfield DA (2009) Acta Neuropathol 118:131–150

    Article  CAS  Google Scholar 

  • Tan W, Colombini M (2007) Biochem Biophys Acta 1768:2510–2515

    Article  CAS  Google Scholar 

  • Terni B, Boada J, Portero-Otín M, Pamplona R, Ferrer I (2009) Brain Pathol. Feb 27 (Epub ahead of print)

  • Terry RD, Gonatas NK, Weiss M (1964) Am J Pathol 44:269–297

    CAS  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002) Neurology 58:1791–1800

    Google Scholar 

  • Thinnes FP (2007) Mol Genet Metab 91:116–118

    Article  CAS  Google Scholar 

  • Vargas T, Ugaldse C, Spuch C, Antequera D, Morán MJ, Martín MA, Ferrer I, Bermejo-Pareja F, Carro E (2008) Neurobiol Aging. Jul 14 (Epub ahead of print)

  • Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia S, Thinakaran G (2005) J Biol Chem 280:25892–25900

    Article  CAS  Google Scholar 

  • Wang X, Su B, Perry G, Smith MA, Zhu X (2007) Free Radic Biol Med 43:1569–1573

    Article  CAS  Google Scholar 

  • Zhu X, Perry G, Moreira PI, Aliev G, Cash AD, Hirai K, Smith MA (2006) J Alzheimer’s Dis 9:147–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidre Ferrer.

Additional information

Special minireview issue of the Journal of Bioenergetics and Biomembranes related to mitochondria and Alzheimer’s disease: Mitochondrial matters of the brain: amyloid formation and Alzheimer’s disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, I. Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J Bioenerg Biomembr 41, 425–431 (2009). https://doi.org/10.1007/s10863-009-9243-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9243-5

Keywords

Navigation