Skip to main content
Log in

The kinetics of the autoxidation of polyunsaturated fatty acids

  • Published:
Lipids

Abstract

The kinetics of the autoxidation of a series of polyunsaturated fatty acids (PUFA) with increasing degrees of unsaturation and the mono-, di-and triglycerides of linoleate have been studied in homogeneous chlorobenzene solution at 37 C under 760 torr of oxygen. The autoxidations were initiated by thermal decomposition of azo initiators and followed by measuring the rate of oxygen uptake. The rate of chain initiation was determined by the induction period method using α-tocopherol as the chainbreaking antioxidant. The measured oxidizabilities of the PUFA are linearly dependent on the number of doubly allylic positions present in the molecule. Thus, the oxidizability of linoleate is 2.03×10−2 M−1/2 sec−1/2, and the value for docosahexaenoate is five times greater, 10.15×10−2 M−1/2 sec−1/2. The rate of autoxidation for all PUFA studied and for the mono- and diglyceride is proportional to the substrate concentration and to the square root of the rate of chain initiation, implying that the autoxidation of these compounds follows the usual kinetic rate law. The autoxidation of the triglyceride is more complex and does not appear to follow the same rate law at all substrate concentrations. This deviation from the usual kinetic rate expression may be due to lipid aggregation at low concentrations of the triglyceride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tappel, A.L. (1980) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. IV, pp. 1–47, Academic Press, New York.

    Google Scholar 

  2. Pryor, W.A. (1976) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. I, pp. 1–49, Academic Press, New York.

    Google Scholar 

  3. Pryor, W.A. (1984) inFree Radicals in Molecular Biology, Aging and Disease (Armstrong, D., Sohol, R.S., Cutler, R.G., and Slater, T.F., eds.), pp. 13–43, Raven Press, New York.

    Google Scholar 

  4. Barclay, L.R.C., and Ingold, K.U. (1981)J. Am. Chem. Soc. 103, 6478–6485 and references cited therein.

    Article  CAS  Google Scholar 

  5. Pryor, W.A., Kaufman, M.J., and Chruch, D.F. (1985)J. Org. Chem. 50, 281–283.

    Article  CAS  Google Scholar 

  6. Yamamoto, Y., Niki, E., Eguchi, J., Kamiya, Y., and Shimasaki, H. (1985)Biochim. Biophys. Acta 819, 29–36.

    Article  PubMed  CAS  Google Scholar 

  7. Holman, R.T., and Elmer, O.C. (1947)J. Am. Oil Chem. Soc. 24, 127–129.

    CAS  Google Scholar 

  8. Lundberg, W.O. ed. (1961)Autoxidation and Antioxidants, Vols. I and II, Interscience, New York.

    Google Scholar 

  9. Mill, T., and Hendry, D.G. (1990) inChemical Kinetics (Banford, C.H., and Tipper, C.F.H., eds.) pp. 1–83, Elsevier Scientific Publishing, New York.

    Google Scholar 

  10. Maillard, B., Ingold, K.U., and Scaiano, J.C. (1983)J. Am. Chem. Soc. 105, 5095–5099.

    Article  CAS  Google Scholar 

  11. Boozer, C.E., Hammond, G.S., Hamilton, C.E., and Sen, J.N. (1955)J. Am. Chem. Soc. 77, 3233–3237.

    Article  CAS  Google Scholar 

  12. Burton, G.W., and Ingold, K.U. (1981)J. Am. Chem. Soc. 103, 6472–6477.

    Article  CAS  Google Scholar 

  13. Kiefer, H., and Traylor, T.G. (1966)Tetrahedron Lett. 49, 6163–6168.

    Article  Google Scholar 

  14. Howard, J.A., and Ingold, K.U. (1969)Can. J. Chem. 47, 3809–3815.

    Article  CAS  Google Scholar 

  15. Yamamoto, Y., Haga, S., Niki, E., and Kamiya, Y. (1984)Bull. Chem. Soc. Jpn. 57, 1260–1264.

    Article  CAS  Google Scholar 

  16. Van Hook, J.P., and Tobolsky, A.V. (1958)J. Am. Chem. Soc. 80, 779–782.

    Article  Google Scholar 

  17. Howard, J.A., and Ingold, K.U. (1962)Can. J. Chem. 40, 1851–1864.

    Article  CAS  Google Scholar 

  18. Hammond, G.S., Sen, J.M., and Boozer, C.E. (1955)J. Am. Chem. Soc. 77, 3244–3248.

    Article  CAS  Google Scholar 

  19. Holman, R.T. (1954) inProgress in the Chemistry of Fats and Other Lipids (Holman, R.T., Lundberg, W.O., and Malkin, T., eds.) Vol. 2, p. 51, Academic Press, New York.

    Google Scholar 

  20. Howard, J.A., and Ingold, K.U. (1967)Can. J. Chem. 45, 793–802.

    Article  CAS  Google Scholar 

  21. Anderson, R.E., Maude, M.B., and Nielsen, J.C. (1985)Current Eye Res. 4, 65–71.

    CAS  Google Scholar 

  22. Handelman, G.J., and Dratz, E.A. (1986)Adv. Free Radical Biol. Med. 2, 1–89.

    Article  CAS  Google Scholar 

  23. Niki, E., Tsuchiyo, J., Yoshokawa, Y., Yamamoto, Y., and Kamiya, Y. (1986)Bull. Chem. Soc. Jpn. 59, 497–501.

    Article  CAS  Google Scholar 

  24. Hendry, D.G., and Russell, G.A. (1964)J. Am. Chem. Soc. 86, 2368–2371.

    Article  CAS  Google Scholar 

  25. Howard, J.A., and Ingold, K.U. (1966)Can. J. Chem. 44, 1119–1130.

    Article  CAS  Google Scholar 

  26. Barclay, L.R.C., MacNeil, J.M., Van Kessel, J., Forrest, B.J. Porter, N.A., Lehman, L.S., Smith, K.J., and Ellington, J.C. (1984)J. Am. Chem. Soc. 106, 6740–6747.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Cosgrove, J.P., Church, D.F. & Pryor, W.A. The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22, 299–304 (1987). https://doi.org/10.1007/BF02533996

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533996

Keywords

Navigation