Skip to main content

Advertisement

Log in

Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Recent data show that amyloid precursor protein accumulates inside axons after disruption of fast axonal transport, but how this leads to mature plaques with extracellular amyloid remains unclear. To investigate this issue, primitive plaques in prefrontal cortex of aged rhesus monkeys were reconstructed using serial section electron microscopy. The swollen profiles of dystrophic neurites were found to be diverticula from the main axis of otherwise normal neurites. Microtubules extended from the main neurite axis into the diverticulum to form circular loops or coils, providing a transport pathway for trapping organelles. The quantity and morphology of organelles contained within diverticula suggested a progression of degeneration. Primitive diverticula contained microtubules and normal mitochondria, while larger, presumably older, diverticula contained large numbers of degenerating mitochondria. In advanced stages of degeneration, apparent autophagosomes derived from mitochondria exhibited a loose lamellar to filamentous internal structure. Similar filamentous material and remnants of mitochondria were visible in the extracellular spaces of plaques. This progression of degeneration suggests that extracellular filaments originate inside degenerating mitochondria of neuritic diverticula, which may be a common process in diverse diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armstrong RA (1998) Beta-amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 9:227–238

    Article  PubMed  CAS  Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  PubMed  CAS  Google Scholar 

  • Baas PW, Vidya Nadar C, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7:490–498

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Farol PA, Majocha RE, Marotta CA, Bird ED (1991) Evidence for axonal loss in regions occupied by senile plaques in Alzheimer cortex. Neuroscience 42:651–660

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Zhou J, Lynch G (1999) Lysosomal protease inhibitors induce meganeurites and tangle-like structures in entorhinohippocampal regions vulnerable to Alzheimer’s disease. Exp Neurol 158:312–327

    Article  PubMed  CAS  Google Scholar 

  • Boutajangout A, Authlet M, Blanchard V, Touchet N, Tremp G, Pradier L, Brion J-P (2004) Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 15:47–60

    Article  PubMed  CAS  Google Scholar 

  • Braak H (1979) Spindle-shaped appendages of IIIab-pyramids filled with lipofuscin: a striking pathological change of the senescent human isocortex. Acta Neuropathol (Berl) 46:197–202

    Article  CAS  Google Scholar 

  • Brunk UT, Terman A (2002) The mitochondrial–lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281:20483–20493

    Article  PubMed  CAS  Google Scholar 

  • Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  • Chan KY, Bunt AH (1978) An association between mitochondria and microtubules in synaptosomes and axon terminals of cerebral cortex. J Neurocytol 7:137–143

    Article  PubMed  CAS  Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  PubMed  CAS  Google Scholar 

  • Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22:2215–2224

    PubMed  CAS  Google Scholar 

  • Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19:8894–8908

    PubMed  CAS  Google Scholar 

  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Article  PubMed  CAS  Google Scholar 

  • Elleder M, Sokolova J, Hrebicek M (1997) Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol (Berl) 93:379–390

    Article  CAS  Google Scholar 

  • Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  PubMed  CAS  Google Scholar 

  • Fiala JC, Harris KM (2001a) Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Inform Assoc 8(1):1–16

    PubMed  CAS  Google Scholar 

  • Fiala JC, Harris KM (2001b) Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J Microsc 202(3):468–472

    Article  PubMed  CAS  Google Scholar 

  • Fiala JC, Harris KM (2002) Computer-based alignment and reconstruction of serial sections. Microsc Anal USA Edition 52:5–7

    Google Scholar 

  • Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103

    Article  PubMed  Google Scholar 

  • Frezza C, Cipolat S, de Brito OM, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  PubMed  CAS  Google Scholar 

  • Ghadially FN (1997) Ultrastructural pathology of the cell and matrix. Butterworth-Heinemann, Boston

    Google Scholar 

  • Ginsberg SD, Crino PB, Hemby SE, Weingarten JA, Lee VM, Eberwine JH, Trojanowski JQ (1999) Predominance of neuronal mRNAs in individual Alzheimer’s disease senile plaques. Ann Neurol 45:174–181

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks PR, Burgoyne RD, Gray EG (1982) Presynaptic microtubules: organisation and assembly/disassembly. Neuroscience 7:739–749

    Article  PubMed  CAS  Google Scholar 

  • Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Aβ accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660

    Article  PubMed  CAS  Google Scholar 

  • Hariri M, Millane G, Guimond MP, Guay G, Dennis JW, Nabi IR (2000) Biogenesis of multilamellar bodies via autophagy. Mol Biol Cell 11:255–268

    PubMed  CAS  Google Scholar 

  • Heilbroner PL, Kemper TL (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys. Acta Neuropathol 81:60–65

    Article  PubMed  CAS  Google Scholar 

  • Helen P, Zeitlin R, Hervonen A (1980) Mitochondrial accumulations in nerve fibers of human sympathetic ganglia. Cell Tissue Res 207:491–498

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  • Hirano A (1985) Neurons, astrocytes, and ependyma. In: Davis RL, Robertson DM (eds)Textbook of neuropathology, Williams and Wilkins, Baltimore, pp 1–91

    Google Scholar 

  • Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121:305–315

    Article  PubMed  CAS  Google Scholar 

  • Karlsson U, Schultz RL (1966) Fixation of the central nervous system for electron microscopy by aldehyde perfusion. III. Structural changes after exsanguinations and delayed perfusion. J Ultrastruct Res 14:47–63

    Article  Google Scholar 

  • Kawai M, Cras P, Richey P, Tabaton M, Lowery DE, Gonzalez-DeWhitt PA, Greenberg BD, Gambetti P, Perry G (1992) Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am J Path 140:947–958

    PubMed  CAS  Google Scholar 

  • Kawarabayashi T, Shoji M, Yamaguchi H, Tanaka M, Harigaya Y, Ishiguro K, Hirai S (1993) Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett 153:73–76

    Article  PubMed  CAS  Google Scholar 

  • Kidd M (1964) Alzheimer’s disease—an electron microscopical study. Brain 87:307–320

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310:303–311

    Article  PubMed  CAS  Google Scholar 

  • Krigman MR, Feldman RG, Bensch K (1965) Alzheimer’s presenile dementia: a histochemical and electron microscopic study. Lab Invest 14:381–396

    PubMed  CAS  Google Scholar 

  • Kokubo H, Kayed R, Glabe CG, Saido TC, Iwata N, Helms JB, Yamaguchi H (2005a) Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Res 1045:224–228

    PubMed  CAS  Google Scholar 

  • Kokubo H, Kayed R, Glabe CG, Yamaguchi H (2005b) Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res 1031:222–228

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Saido TC, Iwata N, Helms JB, Shinohara R, Yamaguchi H (2005c) Part of membrane-bound Abeta exists in rafts within senile plaques in Tg2576 mouse brain. Neurobiol Aging 26:409–418

    Article  PubMed  CAS  Google Scholar 

  • Lankford KL, Klein WL (1990) Ultrastructure of individual neurons isolated from avian retina: occurrence of microtubule loops in dendrites. Brain Res Dev Brain Res 51:217–224

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808

    PubMed  CAS  Google Scholar 

  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollack S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  PubMed  CAS  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Gen 15:1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Sisodia SS, Koo EH, Cork LC, Dellovade TL, Weidemann A, Beyreuther K, Masters C, Price DL (1991) Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci USA 88:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Pardo CA, Cork LC, Price DL (1994) Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am J Pathol 145:1358–1381

    PubMed  CAS  Google Scholar 

  • Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007) Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol 66:525–532

    PubMed  CAS  Google Scholar 

  • Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9(3 suppl):277–289

    PubMed  CAS  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropath Exp Neurol 64:113–122

    PubMed  Google Scholar 

  • Peters A (1991) Aging in monkey cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Normal and altered states of function, vol 9. Plenum Press, New York, pp 485–510

    Google Scholar 

  • Peters A, Palay SL, Webster HdeF (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Peters A, Leahu D, Moss MB, McNally KJ (1994) The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex 6:621–635

    Article  Google Scholar 

  • Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068

    Article  PubMed  CAS  Google Scholar 

  • Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996a) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol (Berl) 91:226–235

    Article  CAS  Google Scholar 

  • Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996b) Plasma membrane fragility in dystrophic neurites in senile plaques of Alzheimer’s disease: an index of oxidative stress. Acta Neuropathol (Berl) 91:1–5

    Article  CAS  Google Scholar 

  • Purpura DP, Pappas GD, Baker HJ (1978) Fine structure of meganeurites and secondary growth processes in feline GM1-gangliosidosis. Brain Res 143:1–12

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5:2801–2808

    PubMed  CAS  Google Scholar 

  • Roos J, Hummel T, Ng N, Klambt C, Davis GW (2000) Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26:371–382

    Article  PubMed  CAS  Google Scholar 

  • Rui Y, Tiwari P, Xie Z, Zheng JQ (2006) Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J Neurosci 26:10480–10487

    Article  PubMed  CAS  Google Scholar 

  • Sloane JA, Pietropaolo MF, Rosene DL, Moss MB, Peters A, Kemper T, Abraham CR (1997) Lack of correlation between plaque burden and cognition in the aged monkey. Acta Neuropathol (Berl) 94:471–478

    Article  CAS  Google Scholar 

  • Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287

    Article  PubMed  CAS  Google Scholar 

  • Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Annu Rev Biochem 75:607–627

    Article  PubMed  CAS  Google Scholar 

  • Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–275

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Terry RD (1967) Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol 8:276–284

    Article  PubMed  CAS  Google Scholar 

  • Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879

    PubMed  CAS  Google Scholar 

  • Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Wisniewski HM (1970) The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme GEW, O’Connor M (eds) Alzheimer’s disease and related conditions. J. & A. Churchill, London, pp 145–168

    Google Scholar 

  • Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (eds) Aging and the brain. Plenum Press, New York, pp 89–116

    Google Scholar 

  • Tomlinson BE (1992) Ageing and the dementias. In: Adams JH, Duchen LW (eds) Greenfield’s neuropathology. Oxford University Press, New York, pp 1284–1410

    Google Scholar 

  • Tsai J, Grutzendler J, Duff K, Gan W-B (2004) Fibrillar amyloid deposition leads to synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons: electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84:513–530

    Article  PubMed  CAS  Google Scholar 

  • Uno H, Alsum PB, Dong S, Richardson R, Zimbric ML, Thieme CS, Houser WD (1996) Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol Aging 17(2):275–281

    Article  PubMed  CAS  Google Scholar 

  • Webster HD (1962) Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J Cell Biol 12:361–383

    Article  PubMed  CAS  Google Scholar 

  • Wegiel J, Wang KC, Tarnawski M, Lach B (2000) Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol (Berl) 100:356–364

    Article  CAS  Google Scholar 

  • Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropath Exp Neurol 32:566–584

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Xiong W-C, Stern DM (2006) Mitochondrial amyloid-beta peptide: pathogenesis or late-phase development. J Alz Dis 9:127–137

    Google Scholar 

  • Yong AP, Bednarski E, Gall CM, Lynch G, Ribak CE (1999) Lysosomal dysfunction results in lamina-specific meganeurite formation but not apoptosis in frontal cortex. Exp Neurol 157:150–160

    Article  PubMed  CAS  Google Scholar 

  • Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Roberg K, Jerhammar F, Marcusson J, Terman A (2006) Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett 394:184–189

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Institute of Mental Health (RO1 MH057414) and National Institute of Neurological Disorders and Stroke (RO1 NS024760), from the National Institute on Aging (P01 AG00001), and from the Dudley Allen Sargent Research Fund, SAR, Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Fiala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiala, J.C., Feinberg, M., Peters, A. et al. Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 212, 195–207 (2007). https://doi.org/10.1007/s00429-007-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0153-1

Keywords

Navigation