Skip to main content
Log in

High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present three novel exclusively heteronuclear 5D 13C direct-detected NMR experiments, namely (HN-flipN)CONCACON, (HCA)CONCACON and (H)CACON(CA)CON, designed for easy sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The experiments proposed have been optimized to overcome the drawbacks which may dramatically complicate the characterization of IDPs by NMR, namely the small dispersion of chemical shifts and the fast exchange of the amide protons with the solvent. A fast and reliable automatic assignment of α-synuclein chemical shifts was obtained with the Tool for SMFT-based Assignment of Resonances (TSAR) program based on the information provided by these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R (2006a) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Lee Y-M, Luchinat C, Pierattelli R (2006b) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006c) 13C-detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45

    Article  Google Scholar 

  • Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200

    Article  Google Scholar 

  • Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Pierattelli R (2009b) Speeding up 13C direct detection Biomolecular NMR experiments. J Am Chem Soc 131:15339–15345

    Article  Google Scholar 

  • Bermel W, Bertini I, Chill JH, Felli IC, Kumar VMV, Haba N, Pierattelli R (2012a) Aminoacid-types selective 13C detected amino-acid-selective NMR experiments for the study of intrinsically disordered proteins (IDPs). ChemBioChem 13:2425–2432

    Article  Google Scholar 

  • Bermel W, Bertini I, Gonnelli L, Felli IC, Kozminski W, Piai A, Pierattelli R, Stanek J (2012b) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301

    Article  Google Scholar 

  • Bermel W, Bruix M, Felli IC, Kumar VMV, Pierattelli R, Serrano S (2013) Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. J Biomol NMR 55:231–237

    Article  Google Scholar 

  • Böhlen J-M, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301

    Article  ADS  Google Scholar 

  • Csizmok V, Felli IC, Tompa P, Banci L, Bertini I (2008) Structural and dynamic characterization of intrinsically disordered human securin by NMR. J Am Chem Soc 130:16873–16879

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX Pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for the elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–271

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  Google Scholar 

  • Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148

    ADS  Google Scholar 

  • Gil S, Hosek T, Solyom Z, Kümmerle R, Brutscher B, Pierattelli R, Felli IC (2013) NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. Angew Chem Int Ed. doi:10.1002/anie.201304272

  • Goddard TD, Kneller DG (2000) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Haba NY, Gross R, Novacek J, Shaked H, Zidek L, Barda-Saad M, Chill JH (2013) NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein. Biophysical J 105:481–493

    Article  ADS  Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J Am Chem Soc 131:7222–7223

    Article  Google Scholar 

  • Huang C, Ren G, Zhou H, Wang C (2005) A new method for purification of recombinant human alpha-synuclein in Escherichia coli. Protein Expr Purif 42:173–177

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192:123–130

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W (2009) Narrow peaks and high dimensionalities: exploiting the advantages of random sampling. J Magn Reson 197:219–228

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2010) Random sampling in multidimensional NMR spectroscopy. Prog NMR Spectrosc 57:420–434

    Article  Google Scholar 

  • Knoblich K, Whittaker S, Ludwig C, Michiels P, Jiang T, Schafflhausen B, Günther U (2009) Backbone assignment of the N-terminal polyomavirus large T antigen. Biomol NMR Assign 3:119–123

    Article  Google Scholar 

  • Kumar D, Hosur RV (2011) hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1) H(N), (15) N and (13) C’) resonances in (15) N/(13) C-labeled proteins. Magn Reson Chem 49:575–583

    Article  Google Scholar 

  • Mantylahti S, Hellman M, Permi P (2011) Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins. J Biomol NMR 49:99–109

    Article  Google Scholar 

  • Mittag T, Forman-Kay J (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14

    Article  Google Scholar 

  • Narayanan RL, Duerr HN, Bilbow S, Biernat J, Mendelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Soc 132:11906–11907

    Article  Google Scholar 

  • Novacek J, Zawadzka-Kazimierczuk A, Papoušková V, Zidek L, Sanderová H, Krasny L, Kozminski W, Sklenar V (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11

    Article  Google Scholar 

  • Novacek J, Haba NY, Chill JH, Zidek L, Sklenar V (2012) 4D Non-uniformly sampled HCBCACON and (1) J(NC (α))-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53:139–148

    Article  Google Scholar 

  • Novacek J, Janda L, Dopitova R, Zidek L, Sklenar V (2013) Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J Biomol NMR 56:291–301

    Article  Google Scholar 

  • O’Hare B, Benesi AJ, Showalter SA (2009) Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. J Magn Reson 200:354–358

    Article  ADS  Google Scholar 

  • Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147

    Article  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2012) New amino acid residue type identification experiments valid for protonated and deuterated proteins. J Biomol NMR 54:145–153

    Article  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2013) Direct correlation of consecutive C’–N groups in proteins: a method for the assignment of intrinsically disordered proteins. J Biomol NMR 57:57–63

    Article  Google Scholar 

  • Pérez Y, Gairi M, Pons M, Bernadò P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391:136–148

    Article  Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  Google Scholar 

  • Schanda P, Forge V, Brutscher B (2007) Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy. Proc Natl Acad Sci USA 104:11257–11262

    Article  ADS  Google Scholar 

  • Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340

    ADS  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    ADS  Google Scholar 

  • Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321

    Article  Google Scholar 

  • Thakur A, Chandra K, Dubey A, D’Silva P, Atreya HS (2013) Rapid characterization of hydrogen exchange in proteins. Angew Chem 52:2440–2443

    Article  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  Google Scholar 

  • Tompa P (2009) Structure and function of intrinsically disordered proteins. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Shulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2007) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427

    Article  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  Google Scholar 

  • Zawadzka-Kazimierczuk A, Kozminski W, Billeter M (2012) TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J Biomol NMR 54:81–95

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the EC 7th Framework program BioNMR (contract 261863), by the EC Marie Curie ITN program IDPbyNMR (contract 264257) and by grant number IP2012 062772, funded by Polish Ministry of Science and Higher Education for years 2013–2014. AZK thanks the Foundation for Polish Science for support with the START and the POMOST programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabella C. Felli or Roberta Pierattelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2000 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermel, W., Felli, I.C., Gonnelli, L. et al. High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57, 353–361 (2013). https://doi.org/10.1007/s10858-013-9793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9793-z

Keywords

Navigation