Skip to main content

Advertisement

Log in

4D Non-uniformly sampled HCBCACON and 1 J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit 13C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (Hα, and Hβ) and carbon (Cα, Cβ) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient secondary structure motifs in the intrinsically disordered proteins (Hα, Cα, Cβ, C′, and N) can be extracted from each spectrum. Compared to the commonly used assignment strategy based on matching the Cα and Cβ chemical shifts, inclusion of the Hα and Hβ provides up to three extra resonance frequencies that decrease the chance of ambiguous assignment. The experiments were successfully applied to the original assignment of a 12.8 kDa intrinsically disordered protein having a high content of proline residues (26 %) in the sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atreya H, Eletsky A, Szyperski T (2005) Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G(2)FT NMR experiments. J Am Chem Soc 127(13):4554–4555

    Article  Google Scholar 

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling: an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73(1):69–77

    Google Scholar 

  • Barna JCJ, Laue ED (1987) Comparison of conventional and exponential sampling for 2D NMR experiments: application to a 2D NMR spectrum of a protein. J Magn Reson 75:384–389

    Google Scholar 

  • Bermel W, Bertini I, Duma L, Felli IC, Emsley L, Pierattelli R, Vasos PR (2005) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed 44(20):3089–3092

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006) C-13-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Mag Res Sp 48(1):25–45

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli I, Lee Y, Luchinat C, Pierattelli R (2006) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128(12):3918–3919

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R (2006) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178(1):56–64

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198(2):275–281

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2009) Speeding up C-13 direct detection biomolecular NMR spectroscopy. J Am Chem Soc 131(42):15339–15345

    Article  Google Scholar 

  • Billadeau DD, Burkhardt JK (2006) Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic 7(11):1451–1460

    Article  Google Scholar 

  • Bodenhausen G, Ernst RR (1981) The accordion experiment, a simple approach to three dimensional NMR spectroscopy. J Magn Reson 45:367–373

    Google Scholar 

  • Bodenhausen G, Ernst RR (1982) Direct determination of rate constants of slow dynamic processes by two-dimensional “accordion” spectroscopy in nuclear magnetic resonance. J Am Chem Soc 104(5):1304–1309

    Article  Google Scholar 

  • Brutscher B (2002) Intraresidue HNCA and COHNCA experiments for protein backbone resonance assignment. J Magn Reson 156(1):155–159

    Article  ADS  Google Scholar 

  • Bussell R, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem 276(49):45996–46003

    Article  Google Scholar 

  • Cai M, Ying H, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R (1998) An efficient and cost eddective isotope labeling protocol for proteins expressed in shape Escherichia coli. J Biomol NMR 11(1):97–102

    Article  Google Scholar 

  • Coggins BE, Zhou P (2007) Sampling of the time domain along concentric rings. J Magn Reson 184:207–221

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42(4):225–239

    Article  Google Scholar 

  • de la Fuente MA, Sasahara Y, Calamito M, Anton IM, Elkhal A, Gallego MD, Suresh K, Siminovitch K, Ochs HD, Anderson KC, Rosen FS, Geha RS, Ramesh N (2007) WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASp). PNAS 104(3):926–931

    Article  ADS  Google Scholar 

  • Ding K, Gronenborn AM (2008) Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson 156:262–268

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78(4):635–644

    Article  Google Scholar 

  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform 11:161–171

    Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    Article  Google Scholar 

  • Dyson H, Wright P (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104(8):3607–3622

    Article  Google Scholar 

  • Dyson H, Wright P (2005) Intrinsically unstructured proteins and their functions. Nature Rev Mol Cell Biol 6(3):197–208

    Article  Google Scholar 

  • Eliezer D (2007) Characterizing residual structure in disordered protein states using nuclear magnetic resonance. Methods Mol Biol 350:49–67

    Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19(1):23–30

    Article  Google Scholar 

  • Fink A (2005) Natively unfolded proteins. Curr Opin Struct Biol 15(1):35–41

    Article  Google Scholar 

  • Frueh DP, Sun ZYJ, Vosburg DA, Walsh CT, Hoch JC, Wagner G (2006) Non-uniformly sampled double-TROSY hNcaNH experiments for NMR sequential assignments of large proteins. J Am Chem Soc 128(17):5757–5763

    Article  Google Scholar 

  • Ganguly D, Chen J (2009) Structural interpretation of paramagnetic relaxation enhancement-derived distances for disordered protein states. J Mol Biol 390(3):467–477

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). PNAS 102(31):10876–10881

    Article  Google Scholar 

  • Hiller S, Wasmer C, Wider G, Wüthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129(35):10,823–10,828

    Article  Google Scholar 

  • Kazimierczuk K, Koźmiński W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192(1):123–130

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W (2009) Narrow peaks and high dimensionalities: exploiting the advantages of random sampling. J Magn Reson 205(2):286–292

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W (2010) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 197(2):219–228

    Article  ADS  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectra information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kupče Ē, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  • Kupče Ē, Freeman R (2008) Hyperdimensional NMR spectroscopy. Prog Nucl Magn Reson 11:22–30

    Google Scholar 

  • Malmodin D, Billeter M (2005) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127(39):13486–13487

    Article  Google Scholar 

  • Marion D (2006) Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction. J Biomol NMR 36(1):45–54

    Article  Google Scholar 

  • Mobli M, Stern AS, Hoch JC (2008) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182(1):96–105

    Article  ADS  Google Scholar 

  • Mobli M, Hoch JC (2008) Maximum entropy spectral reconstruction of nonuniformly sampled data. Concepts Magn Reson 32(6):436–448

    Article  Google Scholar 

  • Motáčková V, Kubíčková M, Kožíšek M, Grantz-Šašková K, Švec M, Žídek L, Sklenář V (2009) Backbone H-1, C-13, and N-15 NMR assignment for the inactive form of the retroviral protease of the murine intracisternal A-type particle, inMIA-14 PR. Biomol NMR Assignments 3(2):261–264

    Article  Google Scholar 

  • Motáčková V, Nováček J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Žídek L, Koźmiński W, Sklenář V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48(3):169–177

    Article  Google Scholar 

  • Mukrasch M, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009) Structural polymorphism of 441-residue Tau at single residue resolution. PLoS Biol 7(2):399–414

    Article  Google Scholar 

  • Narayanan RL, Durr UHN, Bibow S, Biernat J, Mandelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Soc 132(34):11906–11907

    Article  Google Scholar 

  • Nietlispach D, Ito Y, Laue ED (2002) A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA. J Am Chem Soc 124:11199–11207

    Article  Google Scholar 

  • Nováček J, Zawadzka-Kazimierczuk A, Papoušková V, Žídek L, Koźmiński W, Sklenář V (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50(1):1–11

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20(1):49–60

    Article  Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson 59(3):271–292

    Article  Google Scholar 

  • Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for H-N and N-15 sequential correlations in (C-13, N-15) labeled proteins: application to unfolded proteins. J Biomol NMR 20(2):135–147

    Article  Google Scholar 

  • Pannetier N, Houben K, Blanchard L, Marion D (2007) Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. J Magn Reson 186(1):142–149

    Article  ADS  Google Scholar 

  • Permi P (2002) Intraresidual HNCA: an experiment for correlating only intraresidual backbone resonances. J Biomol NMR 23(3):201–209

    Article  Google Scholar 

  • Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal H-1 relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124(43):12898–12902

    Article  Google Scholar 

  • Peterson FC, Deng Q, Zettl M, Prehoda KE, Lim WA, Way M, Volkman BF (2007) Multiple WASP-interacting protein recognition motifs are required for a functional interaction with N-WASp. J Biol Chem 282(11):8446–8453

    Article  Google Scholar 

  • Peti W, Smith LJ, Redfield C, Schwalbe H (2001) Chemical shifts in denatured proteins: resonance assignments for denatured ubiquitin and comparisons with other denatured proteins. J Biomol NMR 19(2):153–165

    Article  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170(1):15–21

    Article  ADS  Google Scholar 

  • Salmon L, Nodet G, Ozenne V, Yin G, Jensen MR, Zweckstetter M, Blackledge M (2010) NMR characterization of long-range order in intrinsically disordered proteins. J Am Chem Soc 132:8407–8418

    Article  Google Scholar 

  • Sasahara Y, Rachid R, Byrne MJ, de la Fuente MA, Abraham RT, Ramesh N, Geha RS (2002) Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol Cell 10(6):1269–1281

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mang Reson Spect 34(2):93–158

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1994) Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 4(4):483–490

    Article  Google Scholar 

  • Sørensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR (1984) Product operator formalism for the description of NMR pulse experiments. Prog Nucl Mang Reson Spect 16:163–192

    Article  Google Scholar 

  • Stanek J, Koźmiński W (2002) Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J Biomol NMR 47(1):65–77

    Article  Google Scholar 

  • Stern AS, Li KB, Hoch JC (2002) Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. J Am Chem Soc 124(9):1982–1993

    Article  Google Scholar 

  • Sun ZYJ, Frueh DP, Selenko P, Hoch JC, Wagner G (2005) Fast assignment of N-15-HSQC peaks using high-resolution 3D HNcocaNH experiments with non-uniform sampling. J Biomol NMR 33(1):43–50

    Article  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wütrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115(20):9307–9308

    Article  Google Scholar 

  • Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA (2002) Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111(4):565–576

    Article  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    Article  Google Scholar 

  • Wen J, Wu J, Zhou P (2011) Sparsely sampled high-resolution 4-D experiments for efficient backbone resonance assignment of disordered proteins. J Magn Reson 209(1):94–100

    Article  ADS  Google Scholar 

  • Yao J, Chung J, Eliezer D, Wright PE, Dyson HJ (2001) NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry 40(12):3561–3571

    Article  Google Scholar 

  • Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W (2010) A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson 202(1):109–116

    Article  ADS  Google Scholar 

  • Zweckstetter M, Bax A (2001) Single-step determination of protein substructures using dipolar couplings: aid to structural genomics. J Am Chem Soc 123(39):9490–9491

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project "CEITEC - Central European Institute of Technology" from European Regional Development Fund, grant number CZ.1.05/1.1.00/02.0068, (J. N., L. Z., and V. S.) and by the Czech Science Foundation, grant numbers P206/11/0758 (J. N., L. Z., and V. S.). J.H.C. acknowledges the support of a Legacy Heritage personal grant by the Israel Science Foundation. Financial support by the Access to Research Infrastructures activity in the 7th Framework Programme of the EC (Contract 228461, EAST-NMR) for conducting the research is gratefully acknowledged. The project is a part of Joint Research Activity in the 7th Framework program of the EC (BioNMR n. 261863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Žídek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (180 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nováček, J., Haba, N.Y., Chill, J.H. et al. 4D Non-uniformly sampled HCBCACON and 1 J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53, 139–148 (2012). https://doi.org/10.1007/s10858-012-9631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9631-8

Keywords

Navigation