Skip to main content
Log in

Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure–function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of 13Cα, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bermel W, Bertini I, Duma L, Emsley L, Felli IC, Pierattelli R, Vasos PR (2005a) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed 44:3089–3092

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Pierattelli R, Vasos PR (2005b) A selective experiment for the sequential protein backbone assignment from 3D heteronuclear spectra. J Magn Reson 172:324–328

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Lee Y-M, Luchinat C, Pierattelli R (2006a) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006b) 13C-detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45

    Article  Google Scholar 

  • Bermel W, Felli IC, Matzapetakis M, Pierattelli R, Theil EC, Turano P (2007) A method for Cα direct-detection in protonless NMR. J Magn Reson 188:301–310

    Article  ADS  Google Scholar 

  • Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200

    Article  Google Scholar 

  • Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Pierattelli R (2009b) Speeding up 13C direct detection NMR experiments. J Am Chem Soc 131:15339–15345

    Article  Google Scholar 

  • Bermel W, Bertini I, Chill JH, Felli IC, Kumar VMV, Haba N, Pierattelli R (2012a) Aminoacid-types selective 13C direct-detected exclusively heteronuclear experiments to study intrinsically disordered proteins. Chem Bio Chem 13:2425–2432

    Article  Google Scholar 

  • Bermel W, Bertini I, Gonnelli L, Felli IC, Kozminski W, Piai A, Pierattelli R, Stanek J (2012b) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301

    Article  Google Scholar 

  • Bertini I, Duma L, Felli IC, Fey M, Luchinat C, Pierattelli R, Vasos PR (2004) A heteronuclear direct detection NMR experiment for protein backbone assignment. Angew Chem Int Ed 43:2257–2259

    Article  Google Scholar 

  • Bertini I, Felli IC, Gonnelli L, Kumar VMV, Pierattelli R (2011) High-resolution characterization of intrinsic disorder in proteins: expanding the suite of 13C detected NMR experiments to determine key observables. ChemBioChem 12:2347–2352

    Article  Google Scholar 

  • Boehlen J-M, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • De Simone A, Cavalli A, Hsu ST, Vranken W, Vendruscolo M (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333

    Article  Google Scholar 

  • Duma L, Hediger S, Lesage A, Emsley L (2003) Spin-state selection in solid-state NMR. J Magn Reson 164:187–195

    Article  ADS  Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for the elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–271

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  Google Scholar 

  • Eletsky A, Moreira O, Kovacs H, Pervushin K (2003) A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13C spectroscopy. J Biomol NMR 26:167–179

    Article  Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  Google Scholar 

  • Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148

    Google Scholar 

  • Felli IC, Pierattelli R (2012a) 13C direct detection NMR. In: McGreevy KS, Parigi G, Bertini I (eds) NMR of biomolecules. Wiley, Newyork, pp 433–442

    Google Scholar 

  • Felli IC, Pierattelli R (2012b) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64:473–481

    Article  Google Scholar 

  • Felli IC, Pierattelli R and Tompa P (2012) Intrinsically disordered proteins. In: Bertini I, McGreevy KS, Parigi G (eds) Wiley, Newyork, 137-152

  • Garner E, Cannon P, Romero P, Obradovic Z, Dunker AK (1998) Predicting disordered regions from aminoacid sequence: common themes despite differing structural characterization. Genome Inform 9:201–213

    Google Scholar 

  • Hennig M, Bermel W, Spencer A, Dobson CM, Smith LJ, Schwalbe H (1999) Side-chain conformations in an unfolded protein: χ1 distributions in denaturated hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy. J Mol Biol 288:705–723

    Article  Google Scholar 

  • Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange to broadening. J Am Chem Soc 131:7222–7223

    Article  Google Scholar 

  • Kjaergaard M, Poulsen FM (2011) Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR 50:157–165

    Article  Google Scholar 

  • Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog NMR Spectrosc 60:42–51

    Article  Google Scholar 

  • Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structural propensities to sequence differences between α-and γ-synuclein: implications for fibrillation. Protein Sci 15:2795–2804

    Article  Google Scholar 

  • Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W (2010) Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18:1094–1103

    Article  Google Scholar 

  • Mittag T, Forman-Kay J (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14

    Article  Google Scholar 

  • Motackova V, Novacek J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Zidek L, Sanderová H, Krasny L, Kozminski W, Sklenar V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48:169–177

    Article  Google Scholar 

  • Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mendelkow E, Zweckstetter M (2009) Structural polimorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34

    Article  Google Scholar 

  • Novacek J, Zawadzka-Kazimierczuk A, Papoušková V, Zidek L, Sanderová H, Krasny L, Kozminski W, Sklenar V (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11

    Article  Google Scholar 

  • Novacek J, Haba NY, Chill JH, Zidek L, Sklenar V (2012) 4D Non-uniformly sampled HCBCACON and (1) J[NC (α)]-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53:139–148

    Article  Google Scholar 

  • O’Hare B, Benesi AJ, Showalter SA (2009) Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. J Magn Reson 200:354–358

    Article  ADS  Google Scholar 

  • Pérez Y, Gairi M, Pons M, Bernadó P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391:136–148

    Article  Google Scholar 

  • Richter C, Kovacs H, Buck J, Wacker A, Fuertig B, Bermel W, Schwalbe H (2010) 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. J Biomol NMR 47:259–269

    Article  Google Scholar 

  • Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Garner E, Guillot S, Dunker AK (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomputing 3:437–448

    Google Scholar 

  • Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM (1997) Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochem 36:8977–8991

    Article  Google Scholar 

  • Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978

    Article  Google Scholar 

  • Serber Z, Richter C, Moskau D, Boehlen J-M, Gerfin T, Marek D, Haeberli M, Baselgia L, Laukien F, Stern AS, Hoch JC, Dötsch V (2000) New carbon-detected protein NMR experiments using cryoprobes. J Am Chem Soc 122:3554–3555

    Article  Google Scholar 

  • Serber Z, Richter C, Dötsch V (2001) Carbon-detected NMR experiments to investigate structure and dynamics of biological macromolecules. ChemBioChem 2:247–251

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340

    Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    Google Scholar 

  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793

    Article  Google Scholar 

  • Takeuchi K, Sun ZN, Wagner G (2008) Alternate 13C–12C labeling for complete main-chain resonance assignments using Cα direct-detection with applicability toward fast relaxing protein systems. J Am Chem Soc 130:17210–17211

    Article  Google Scholar 

  • Takeuchi K, Frueh DP, Hyberts SG, Sun ZYJ, Wagner G (2010a) High-resolution 3D CANCA NMR experiments for complete main chain assignments using Cα direct detection. J Am Chem Soc 132:2945–2951

    Article  Google Scholar 

  • Takeuchi K, Frueh DP, Sun ZYJ, Hiller S, Wagner G (2010b) CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for main chain resonance assignment, dihedral angle information and aminoacid type identification. J Biomol NMR 47:55–63

    Article  Google Scholar 

  • Tamiola K, Mulder FA (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 10:1014–1020

    Article  Google Scholar 

  • Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Article  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  Google Scholar 

  • Tompa P (2009) Structure and function of intrinsically disordered proteins. Taylor and Francis Group, Boca Raton, FL

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci

  • Vögeli B, Kovacs H, Pervushin K (2004) Measurements of side chain 13C–13C residual dipolar coupling in uniformly deuterated proteins. J Am Chem Soc 126:2414–2420

    Article  Google Scholar 

  • Vögeli B, Kovacs H, Pervushin K (2005) Simultaneous 1H- or 2H-, 15N- and multiple-band-selective 13C-decoupling during acquisition in 13C-detected experiments with proteins and oligonucleotides. J Biomol NMR 31:1–9

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Joint Research Activity and Access to Research Infrastructures (Bio–NMR, contract 261863) and by the Marie Curie ITN programs (IDPbyNMR, contract 264257) in the EC 7th Framework. S·S. acknowledges financial support for a short stay fellowship associated to Project CTQ2008–0080 from the Spanish Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabella C. Felli or Roberta Pierattelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermel, W., Bruix, M., Felli, I.C. et al. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. J Biomol NMR 55, 231–237 (2013). https://doi.org/10.1007/s10858-013-9704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9704-3

Keywords

Navigation