Skip to main content
Log in

A new model for chemical shifts of amide hydrogens in proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We propose a new computational model to predict amide proton chemical shifts in proteins. In addition to the ring-current, susceptibility and electrostatic effects of earlier models, we add a hydrogen-bonding term based on density functional calculations of model peptide–peptide and peptide–water systems. Both distance and angular terms are included, and the results are rationalized in terms of natural bond orbital analysis of the interactions. Comparison to observed shifts for 15 proteins shows a significant improvement over existing structure-shift correlations. These additions are incorporated in a new version of the SHIFTS program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asakura T, Taoka K, Demura M, Williamson MP (1995) The relationship between amide proton chemical shifts and secondary structure. J Biomol NMR 6:227–236

    Article  Google Scholar 

  • Barfield M (2002) Structural dependencies of interresidue scalar coupling h3JNC’ and donor 1H chemical shifts in the hydrogen bonding regions of proteins. J Am Chem Soc 124:4158–4168

    Article  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  ADS  Google Scholar 

  • Beger RD, Bolton PH (1997) Protein ϕ and ψ dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. J Biomol NMR 10:129–142

    Article  Google Scholar 

  • Bohmann JA, Weinhold F, Farrar TC (1997) Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations. J Chem Phys 107:1173–1184

    Article  ADS  Google Scholar 

  • Buckingham AD, Schaefer T, Schneider WG (1960) Solvent effects in nuclear magnetic resonance spectra. J Chem Phys 32:1227–1233

    Article  ADS  Google Scholar 

  • Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods R (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Cui Q, Karplus M (2000) Molecular properties from combined QM/MM methods 2. Chemical shifts in large molecules. J Phys Chem B 104:3721–3743

    Article  Google Scholar 

  • de Dios AC, Pearson JG, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260:1491–1496

    Article  ADS  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb JA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1998) Gaussian 98 (Revision A9). Gaussian Inc, Pittsburgh PA

    Google Scholar 

  • Haigh CW, Mallion RB (1980) Ring current theories in nuclear magnetic resonance. Prog NMR Spectr 13:303–344

    Article  Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1999) Cα and Cβ carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR 13:199–211

    Article  Google Scholar 

  • Jeng M-F, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ (1994) High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure 2:853–868

    Article  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura J, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  ADS  Google Scholar 

  • Le H, Oldfield E (1994) Correlation between N NMR chemical shifts in proteins and secondary structure. J Biomol NMR 4:341–348

    Article  Google Scholar 

  • Le H, Oldfield E (1996) Ab initio studies of amide-N chemical shifts in dipeptides: applications to protein NMR spectroscopy. J Phys Chem 100:16423–16428

    Article  Google Scholar 

  • McConnell HM (1957) Theory of nuclear magnetic shielding in molecules I Long-range dipolar shielding of protons. J Chem Phys 27:226–229

    Article  ADS  Google Scholar 

  • Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26:25–37

    Article  Google Scholar 

  • Meiler J, Maier W, Will M, Meusinger R (2002) Using neural networks for 13C NMR chemical shift prediction-comparison with traditional methods. J Magn Reson 157:242–252

    Article  ADS  Google Scholar 

  • Moon S, Case DA (2006) A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation. J Comput Chem 27:825–836

    Article  Google Scholar 

  • Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26:215–240

    Article  Google Scholar 

  • Ösapay K, Case DA (1991) A new analysis of proton chemical shifts in proteins. J Am Chem Soc 113:9436–9444

    Article  Google Scholar 

  • Parker LL, Houk AR, Jensen JH (2006) Cooperative hydrogen bonding effects are key determinants of backbone amide proton chemical shifts in proteins. J Am Chem Soc 128:9863–9872

    Article  Google Scholar 

  • Pearson JG, Le H, Sanders LK, Godbout N, Havlin RH, Oldfield E (1997) Predicting chemical shifts in proteins: structure refinement of valine residues by using ab initio and empirical geometry optimizations. J Am Chem Soc 119:11941–11950

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Google Scholar 

  • Polshakov VI, Birdsall B, Feeney J (1999) Characterization of rates of ring-flipping in trimethoprim in its ternary complexes with Lactobacillus casei dihydrofolate reductase and coenzyme analogues. Biochemistry 38:15962–15969

    Article  Google Scholar 

  • Redfield C, Dobson CM (1990) H NMR studies of human lysozyme: spectral assignment and comparison with hen lysozyme. Biochemistry 29:7201–7214

    Article  Google Scholar 

  • Rumelhart DE, McClelland J (1986) Parallel distrbuted processing. MIT Press, Boston

    Google Scholar 

  • Sharma Y, Kwon OY, Brooks B, Tjandra N (2002) An ab initio study of amide proton shift tensor dependence on local protein structure. J Am Chem Soc 124:327–335

    Article  Google Scholar 

  • Sitkoff D, Case DA (1997) Density functional calculations of proton chemical shifts in model peptides. J Am Chem Soc 119:12262–12273

    Article  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Meth Enzymol 338:3–34

    Article  Google Scholar 

  • Xu XP, Case DA (2001) Automated prediction of N, Cα, Cβ and C’ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333

    Article  Google Scholar 

  • Xu XP, Case DA (2002) Probing multiple effects on N, Cα, Cβ and C’ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423

    Article  Google Scholar 

  • Zupan J, Gasteiger J (1993) Neural networks for chemists. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM45811. We thank Jan Ziegler, Stephan Schwarzinger and Jan Jensen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, S., Case, D.A. A new model for chemical shifts of amide hydrogens in proteins. J Biomol NMR 38, 139–150 (2007). https://doi.org/10.1007/s10858-007-9156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9156-8

Keywords

Navigation