Skip to main content
Log in

Effects of side-chain orientation on the 13C chemical shifts of antiparallel β-sheet model peptides

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The dependence of the 13C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel β-sheet model peptide represented by the amino acid sequence Ac-(Ala)3-X-(Ala)12-NH2 where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel β-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the 13C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel β-sheet, there is (i) good agreement between computed and observed 13Cα and 13Cβ chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed 13Cα and 13Cβ chemical shifts as a function of χ1 for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed 13Cα chemical shifts on χξ (with ξ ≥ 2) compared to χ1 for eleven out of seventeen residues. Our results suggest that predicted 13Cα and 13Cβ chemical shifts, based only on backbone (φ,ψ) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Burgess AW, Ponnuswamy PK, Scheraga HA (1974) Israel J Chem 12:239–286

    Google Scholar 

  • Chakrabarti P, Pal D (1998) Protein Eng 11:631–647

    Article  Google Scholar 

  • Chesnut DB, Moore KD (1989) J Comp Chem 10:648–659

    Article  Google Scholar 

  • Chothia C, Levitt M, Richardson D (1977) Proc Natl Acad Sci USA 74:4130–4134

    Article  ADS  Google Scholar 

  • Chothia C, Janin J (1981) Proc Natl Acad Sci USA 78:4146–4150

    Article  ADS  Google Scholar 

  • Chou K-C, Scheraga HA (1982) Proc Natl Acad Sci USA 79:7047–7051

    Article  ADS  Google Scholar 

  • Chou K-C, Pottle M, Némethy G, Ueda Y, Scheraga HA (1982) J Mol Biol 162:89–112

    Article  Google Scholar 

  • Chou PY, Fasman GD (1974) Biochemistry 13:211–222

    Article  Google Scholar 

  • Creighton TE (1984) Proteins: Structure and Molecular Properties. W.E. Freeman and Company, New York, pp. 186, 223

  • Derrick JP, Wigley DB (1994) J Mol Biol 243:906–918

    Article  Google Scholar 

  • Dumbrack RL Jr, Karplus M (1993) J Mol Biol 230:543–574

    Article  Google Scholar 

  • Dumbrack RL Jr, Karplus M (1994) Nat Struct Biol 1:334–340

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7, Inc., Pittsburgh, PA

  • Havlin RH, Le H, Laws DD, de Dios AC, Oldfield E (1997) J Am Chem Soc 119:11951–11958

    Article  Google Scholar 

  • Hehre WJ, Radom L, Schleyer P, Pople JA (1986) Ab Initio Molecular Orbital Theory. John Wiley and Sons, New York

    Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1999) J Biomol NMR 13:199–211

    Article  Google Scholar 

  • Kruskal JB Jr (1956) Proc American Math Soc 7:48–50

    Article  MathSciNet  Google Scholar 

  • Kuszewski J, Qin JA, Gronenborn AM, Clore GM (1995) J Magn Reson Ser B 106:92–96

    Article  Google Scholar 

  • Laws DD, Le H, de Dios AC, Havlin RH, Oldfield E (1995) J Am Chem Soc 117:9542–9546

    Article  Google Scholar 

  • McGregor JM, Islam SA, Sternberg MJE (1987) J Mol Biol 198:295–310

    Article  Google Scholar 

  • Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) J Phys Chem 96:6472–6484

    Article  Google Scholar 

  • Pauling LC, Corey RB (1951) Proc Natl Acad Sci USA 37:729–740

    Article  ADS  Google Scholar 

  • Pauling LC, Corey RB (1953) Proc R Soc London Ser B 141:21–33

    Article  ADS  Google Scholar 

  • Pearson JG, Le H, Sanders LK, Godbout N, Havlin RH, Oldfield E (1997) J Am Chem Soc 119:11941–11950

    Article  Google Scholar 

  • Ripoll DR, Scheraga HA (1988) Biopolymers 27:1283–1303

    Article  Google Scholar 

  • Ripoll DR, Vila JA, Scheraga HA (2005) Proc Natl Acad Sci USA 102:7559–7564

    Article  ADS  Google Scholar 

  • Rossmeisl J, Nørskov JK, Jacobsen KW (2004) J Am Chem Soc 126:13140–13143

    Article  Google Scholar 

  • Santiveri CM, Rico M, Jiménez MA (2001) J Biom NMR 19:331–345

    Article  Google Scholar 

  • Sibanda BL, Thornton JM (1991) Methods Enzymol 202:59–82

    Article  Google Scholar 

  • Sosa CP, Ochterski J, Carpenter J, Frisch MJ (1998) J Comp Chem 19:1053–1063

    Article  Google Scholar 

  • Spera S, Bax A (1991) J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) J Am ChemSoc 125:9179–9191

    Article  Google Scholar 

  • Vila JA, Ripoll DR, Baldoni HA, Scheraga HA (2002) J Biomol NMR 24:245–262

    Article  Google Scholar 

  • Vila JA, Baldoni HA, Ripoll DR, Scheraga HA (2003) J Biomol NMR 26:113–130

    Article  Google Scholar 

  • Vila JA, Baldoni HA, Scheraga HA (2004a) Protein Sci 13:2939–2948

    Article  Google Scholar 

  • Vila JA, Baldoni HA, Scheraga HA (2004b) Proteins: Struct Funct Bioinf 57:87–98

    Article  Google Scholar 

  • Wang Y, Jardetzky O (2002) Protein Sci 11:852–861

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson JH, Oldfield E, Markley JL, Sykes BD. (1995) J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Xu X-P, Case DA (2001) J Biomol NMR 21:321–333

    Article  Google Scholar 

  • Xu X-P, Case DA (2002) Biopolymers 65:408–423

    Article  Google Scholar 

  • Zhang C, Kim S-H (2000) J Mol Biol 299:1075–1089

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institutes of Health (GM-14312 and TW-6335), and the National Science Foundation (MCB00-03722). Support was also received from the National Research Council of Argentina (CONICET) [PIP-02485] and from the Universidad Nacional de San Luis [UNSL] (P-328402), Argentina. This research was conducted using the resources of two Beowulf-type clusters located at (a) the Instituto de Matemática Aplicada San Luis (CONICET-UNSL) and (b) the Baker Laboratory of Chemistry and Chemical Biology, Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Scheraga.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villegas, M.E., Vila, J.A. & Scheraga, H.A. Effects of side-chain orientation on the 13C chemical shifts of antiparallel β-sheet model peptides. J Biomol NMR 37, 137–146 (2007). https://doi.org/10.1007/s10858-006-9118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9118-6

Keywords

Navigation