Skip to main content
Log in

Observation of μs time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C

  • Original Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The microsecond time-scale motions in the N-terminal domain of cardiac troponin C (NcTnC) loaded with lanthanide ions have been investigated by means of a \({^{1}\hbox{H}^{\rm N}}\) off-resonance spin-lock experiment. The observed relaxation dispersion effects strongly increase along the series of NcTnC samples containing La3+, Ce3+, and Pr3+ ions. This rise in dispersion effects is due to modulation of long-range pseudocontact shifts by µs time-scale dynamics. Specifically, the motion in the coordination sphere of the lanthanide ion (i.e. in the NcTnC EF-hand motif) causes modulation of the paramagnetic susceptibility tensor which, in turn, causes modulation of pseudocontact shifts. It is also probable that opening/closing dynamics, previously identified in Ca2+–NcTnC, contributes to some of the observed dispersions. On the other hand, it is unlikely that monomer–dimer exchange in the solution of NcTnC is directly responsible for the dispersion effects. Finally, on–off exchange of the lanthanide ion does not seem to play any significant role. The amplification of dispersion effects by Ln3+ ions is a potentially useful tool for studies of µs–ms motions in proteins. This approach makes it possible to observe the dispersions even when the local environment of the reporting spin does not change. This happens, for example, when the motion involves a ‘rigid’ structural unit such as individual α-helix. Even more significantly, the dispersions based on pseudocontact shifts offer better chances for structural characterization of the dynamic species. This method can be generalized for a large class of applications via the use of specially designed lanthanide-binding tags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke M, Skelton NJ, Kördel J, Palmer AG, Chazin WJ (1993) Effects of ion binding on the backbone dynamics of calbindin-D9k determined by 15N NMR relaxation. Biochemistry 32:9832–9844

    Article  Google Scholar 

  • Allegrozzi M, Bertini I, Choi SN, Lee YM Luchinat C (2002) Detecting small structural changes in metalloproteins by the use of NMR pseudocontact shifts. Eur J Inorg Chem 2121–2127

  • Baig I, Bertini I, Del Bianco C, Gupta YK, Lee YM, Luchinat C, Quattrone A (2004) Paramagnetism-based refinement strategy for the solution structure of human alpha-parvalbumin. Biochemistry 43:5562–5573

    Article  Google Scholar 

  • Baldellon C, Alattia JR, Strub MP, Pauls T, Berchtold MW, Cave A, Padilla A (1998) 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Biochemistry 37:9964–9975

    Article  Google Scholar 

  • Banci L, Bertini I, Bren KL, Cremonini MA, Gray HB, Luchinat C, Turano P (1996) The use of pseudocontact shifts to refine solution of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example. J Biol Inorg Chem 1:117–126

    Article  Google Scholar 

  • Bentrop D, Bertini I, Cremonini MA, Forsén S, Luchinat C, Malmendal A (1997) Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3+ ions by 1H NMR. Biochemistry 36:11605–11618

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28:235–242

    Article  Google Scholar 

  • Bertini I, Carrano CJ, Luchinat C, Piccioli N, Poggi L (2002) A␣15N NMR mobility study on the dicalcium P43M calbindin D9k and its mono-La3+-substituted form. Biochemistry 41:5104–5111

    Article  Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846

    Article  ADS  Google Scholar 

  • Bertini I, Donaire A, Jiménez B, Luchinat C, Parigi G, Piccioli M, Poggi L (2001a) Paramagnetism-based versus classical constraints: an analysis of the solution structure of Ca·Ln·calbindin D9k. J Biomol NMR 21:85–98

    Article  Google Scholar 

  • Bertini I, Janik MBL, Lee YM, Luchinat C, Rosato A (2001b) Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2001c) Solution NMR of paramagnetic molecules. Elsevier, Amsterdam

    Book  Google Scholar 

  • Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, Feeney J (1999) NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2+ by Tb3+. FEBS Lett 460:519–526

    Article  Google Scholar 

  • Bloom M, Reeves LW, Wells EJ (1965) Spin echoes and chemical exchange. J Chem Phys 42:1615–1624

    Article  ADS  Google Scholar 

  • Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thøgersen HC, Nyborg J, Kjeldgaard M (1998) EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Struct Fold Des 6:477–489

    Article  Google Scholar 

  • Burling FT, Weis WI, Flaherty KM, Brunger AT (1996) Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271:72–77

    Article  ADS  Google Scholar 

  • Campbell ID, Dobson CM, Williams RJP (1975) Nuclear magnetic resonance studies on structure of lysozyme in solution. Proc R Soc Lond A 345:41–59

    ADS  Google Scholar 

  • Chou JJ, Li SP, Klee CB, Bax A (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997

    Article  Google Scholar 

  • Choy WY, Mulder FAA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE (2002) Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 316:101–112

    Article  Google Scholar 

  • Contreras MA, Ubach J, Millet O, Rizo J, Pons M (1999) Measurement of one bond dipolar couplings through lanthanide-induced orientation of a calcium-binding protein. J Am Chem Soc 121:8947–8948

    Article  Google Scholar 

  • Corson DC, Williams TC, Sykes BD (1983) Calcium-binding proteins - optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin. Biochemistry 22:5882–5889

    Article  Google Scholar 

  • Daragan VA, Mayo KH (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog NMR Spectrosc 31:63–105

    Article  Google Scholar 

  • de la Torre JG, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe – a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Desvaux H, Birlirakis N, Wary C, Berthault P (1995) Study of slow molecular motions in solution using off-resonance irradiation in homonuclear NMR 2. Fast chemical exchange processes. Mol Phys 86:1059–1073

    Article  ADS  Google Scholar 

  • Deverell C, Morgan RE, Strange JH (1970) Studies of chemical exchange by nuclear magnetic relaxation in the rotating frame. Mol Phys 18:553–559

    Article  ADS  Google Scholar 

  • Drohat AC, Tjandra N, Baldisseri DM, Weber DJ (1999) The use of dipolar couplings for determining the solution structure of rat apo-S100B(ββ). Protein Sci 8:800–809

    Google Scholar 

  • Dudev T, Chang LY, Lim C (2005) Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study. J Am Chem Soc 127:4091–4103

    Article  Google Scholar 

  • Dvoretsky A, Gaponenko V, Rosevear PR (2002) Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett 528:189–192

    Article  Google Scholar 

  • Dwek RA, Richards RE, Morallee KG, Nieboer E, Williams RJ, Xavier AV (1971) Lanthanide cations as probes in biological systems – proton relaxation enhancement studies for model systems and lysozyme. Eur J Biochem 21:204–217

    Article  Google Scholar 

  • Eichmüller C, Skrynnikov NR (2005) A new amide proton R 1ρ experiment permits accurate characterization of microsecond time-scale conformational exchange. J Biomol NMR 32:281–293

    Article  Google Scholar 

  • Evenäs J, Forse´n S, Malmendal A, Akke M (1999) Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations. J Mol Biol 289:603–617

    Article  Google Scholar 

  • Evenäs J, Malmendal A, Akke M (2001) Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. Struct Fold Des 9:185–195

    Article  Google Scholar 

  • Fallon JL, Quiocho FA (2003) A closed compact structure of native Ca2+-calmodulin. Struct Fold Des 11:1303–1307

    Article  Google Scholar 

  • Farah CS, Miyamoto CA, Ramos CHI, Dasilva ACR, Quaggio RB, Fujimori K, Smillie LB, Reinach FC (1994) Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal-muscle troponin I. J Biol Chem 269:5230–5240

    Google Scholar 

  • Gaponenko V, Abusamhadneh E, Abbott MB, Finley N, Gasmi-Seabrook G, Solaro RJ, Rance M, Rosevear PR (1999) Effects of troponin I phosphorylation on conformational exchange in the regulatory domain of cardiac troponil C. J␣Biol Chem 274:16681–16684

    Article  Google Scholar 

  • Gay GL, Lindhout DA, Sykes BD (2004) Using lanthanide ions to align troponin complexes in solution: order of lanthanide occupancy in cardiac troponin C. Protein Sci 13:640–651

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2002) SPARKY3. University of California, San Francisco

    Google Scholar 

  • Grabarek Z (2005) Structure of a trapped intermediate of calmodulin: Calcium regulation of EF-hand proteins from a new perspective. J Mol Biol 346:1351–1366

    Article  Google Scholar 

  • Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    Article  Google Scholar 

  • Guéron M (1975) Nuclear relaxation in macromolecules by paramagnetic ions – novel mechanism. J Magn Reson 19:58–66

    Google Scholar 

  • Haberz P, Rodriguez-Castañeda F, Junker J, Becker S, Leonov A, Griesinger C (2006) Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett 8:1275–1278

    Article  Google Scholar 

  • Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ (1998) The kinetic cycle of cardiac troponin C: Calcium binding and dissociation at site II trigger slow conformational rearrangements. Protein Sci 7:2451–2459

    Article  Google Scholar 

  • Hill RB, Bracken C, DeGrado WF, Palmer AG (2000) Molecular motions and protein folding: Characterization of the backbone dynamics and folding equilibrium of α2D using 13C NMR spin relaxation. J Am Chem Soc 122:11610–11619

    Article  Google Scholar 

  • Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Saxena K, Fiebig KM, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349

    Article  Google Scholar 

  • Ishima R, Wingfield PT, Stahl SJ, Kaufman JD, Torchia DA (1998) Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120:10534–10542

    Article  Google Scholar 

  • John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMRView – a computer program for the visualization and analysis of NMR data. J␣Biomol NMR 4:603–614

    Article  Google Scholar 

  • Kay LE (1995) Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 63:277–299

    Article  Google Scholar 

  • Kestin J, Khalifa HE, Correia RJ (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150°C and the pressure range 0.1–35 MPa. J Phys Chem Ref Data 10:71–87

    Article  ADS  Google Scholar 

  • Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67:39–67

    Article  Google Scholar 

  • Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590

    Article  ADS  Google Scholar 

  • Kumar VD, Lee L, Edwards BFP (1991) Refined crystal structure of ytterbium-substituted carp parvalbumin 4.25 at 1.5 Å, and its comparison with the native and cadmium-substituted structures. FEBS Lett 283:311–316

    Article  Google Scholar 

  • Lee L, Sykes BD (1983) Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution – EF calcium-binding site of carp parvalbumin. Biochemistry 22:4366–4373

    Article  Google Scholar 

  • Li MX, Gagné SM, Spyracopoulos L, Kloks CPAM, Audette G, Chandra M, Solaro RJ, Smillie LB, Sykes BD (1997) NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 36:12519–12525

    Article  Google Scholar 

  • Li MX, Gagné SM, Tsuda S, Kay CM, Smillie LB, Sykes BD (1995) Calcium binding to the regulatory N-domain of skeletal-muscle troponin C occurs in a stepwise manner. Biochemistry 34:8330–8340

    Article  Google Scholar 

  • Li MX, Saude EJ, Wang X, Pearlstone JR, Smillie LB, Sykes BD (2002) Kinetic studies of calcium and cardiac troponin I peptide binding to human cardiac troponin C using NMR spectroscopy. Eur Biophys J 31:245–256

    Article  Google Scholar 

  • Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147–163 induces a structural opening in human cardiac tropoin C. Biochemistry 38:8289–8298

    Article  Google Scholar 

  • Li Y, Love ML, Putkey JA, Cohen C (2000) Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci USA 97:5140–5145

    Article  ADS  Google Scholar 

  • Likic VA, Strehler EE, Gooley PR (2003) Dynamics of Ca2+-saturated calmodulin D129N mutant studied by multiple molecular dynamics simulations. Protein Sci 12:2215–2229

    Article  Google Scholar 

  • Lundström P, Akke M (2004) Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant. J Am Chem Soc 126:928–935

    Article  Google Scholar 

  • Luo Y, Wu JL, Li B, Langsetmo K, Gergely J, Tao T (2000) Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. J Mol Biol 296:899–910

    Article  Google Scholar 

  • Machonkin TE, Westler WM, Markley JL (2002) 13C{13C} 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates. J Am Chem Soc 124:3204–3205

    Article  Google Scholar 

  • Malmendal A, Evenäs J, Forsén S, Akke M (1999) Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. J Mol Biol 293:883–899

    Article  Google Scholar 

  • Marchand S, Roux B (1998) Molecular dynamics study of calbindin D9k in the apo and singly and doubly calcium-loaded states. Proteins 33:265–284

    Article  Google Scholar 

  • McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    Article  ADS  Google Scholar 

  • McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struc Biol 14:554–561

    Article  Google Scholar 

  • McKay RT, Saltibus LF, Li MX, Sykes BD (2000) Energetics of the induced structural change in a Ca2+ regulatory protein: Ca2+ and troponin I peptide binding to the E41A mutant of the N-domain of skeletal troponin C. Biochemistry 39:12731–12738

    Article  Google Scholar 

  • Millet O, Bernadó P, Garcia J, Rizo J, Pons M (2002) NMR measurement of the off rate from the first calcium-binding site of the synaptotagmin I C2A domain. FEBS Lett 516:93–96

    Article  Google Scholar 

  • Millet O, Loria JP, Kroenke CD, Pons M, Palmer AG (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J␣Am Chem Soc 122:2867–2877

    Article  Google Scholar 

  • Mittl PRE, Fritz G, Sargent DF, Richmond TJ, Heizmann CW, Grutter MG (2002) Metal-free MIRAS phasing: structure of apo-S100A3. Acta Cryst D 58:1255–1261

    Article  Google Scholar 

  • Mulder FAA, Mittermaier A, Hon B, Dahlquist FW, Kay LE (2001) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol 8:932–935

    Article  Google Scholar 

  • Mustafi SM, Mukherjee S, Chary KVR, Del Bianco C, Luchinat C (2004) Energetics and mechanism of Ca2+ displacement by lanthanides in a calcium binding protein. Biochem 43:9320–9331

    Article  Google Scholar 

  • Pääkkönen K, Annila A, Sorsa T, Pollesello P, Tilgmann C, Kilpeläinen I, Karisola P, Ulmanen I, Drakenberg T (1998)␣Solution structure and main chain dynamics of the regulatory domain (residues 1–91) of human cardiac troponin C. J Biol Chem 273:15633–15638

    Article  Google Scholar 

  • Pääkkönen K, Sorsa T, Drakenberg T, Pollesello P, Tilgmann C, Permi P, Heikkinen S, Kilpeläinen I, Annila A (2000) Conformations of the regulatory domain of cardiac troponin C examined by residual dipolar couplings. Eur J Biochem 267:6665–6672

    Article  Google Scholar 

  • Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  Google Scholar 

  • Parker D, Dickins RS, Puschmann H, Crossland C, Howard JAK (2002) Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010

    Article  Google Scholar 

  • Peters JA, Huskens J, Raber DJ (1996) Lanthanide induced shifts and relaxation rate enhancements. Prog NMR Spectrosc 28:283–350

    Article  Google Scholar 

  • Pfuhl M, Chen HA, Kristensen SM, Driscoll PC (1999) NMR exchange broadening arising from specific low affinity protein self-association: analysis of nitrogen-15 nuclear relaxation for rat CD2 domain 1. J Biomol NMR 14:307–320

    Article  Google Scholar 

  • Pidcock E, Moore GR (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem 6:479–489

    Article  Google Scholar 

  • Potts BCM, Smith J, Akke M, Macke TJ, Okazaki K, Hidaka H, Case DA, Chazin WJ (1995) The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nat Struct Biol 2:790–796

    Article  Google Scholar 

  • Price WS (1998) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part II Experimental aspects. Concepts Magn Reson 10:197–237

    Article  Google Scholar 

  • Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy MEP, Hupkes HJ, Kosters W, Impagliazzo A, Ubbink M (2004) A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chem Eur J 10:3252–3260

    Article  Google Scholar 

  • Rhee MJ, Sudnick DR, Arkle VK, Horrocks WD (1981) Lanthanide ion luminescence probes – characterization of metal-ion binding sites and intermetal energy-transfer distance measurements in calcium-binding proteins.1. Parvalbumin. Biochemistry 20:3328–3334

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34:93–158

    Article  Google Scholar 

  • Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360

    Article  Google Scholar 

  • Spyracopoulos L, Gagné SM, Li MX, Sykes BD (1998) Dynamics and thermodynamics of the regulatory domain of human cardiac troponin C in the apo- and calcium-saturated states. Biochem 37:18032–18044

    Article  Google Scholar 

  • Spyracopoulos L, Gagné SM, Sykes BD (2001) In: Jardetzky O, Finucane MD (eds) Dynamics, structure, and function of␣biological macromolecules. IOS Press, Amsterdam, pp.␣37–44

  • Spyracopoulos L, Li MX, Sia SK, Gagné SM, Chandra M, Solaro RJ, Sykes BD (1997) Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36:12138–12146

    Article  Google Scholar 

  • Strynadka NCJ, Cherney M, Sielecki AR, Li MX, Smillie LB, James MNG (1997) Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 angstrom resolution. J Mol Biol 273:238–255

    Article  Google Scholar 

  • Takeda S, Kobayashi T, Taniguchi H, Hayashi H, Maéda Y (1997) Structural and functional domains of the troponin complex revealed by limited digestion. Eur J Biochem 246:611–617

    Article  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maéda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424:35–41

    Article  ADS  Google Scholar 

  • Tjandra N, Kuboniwa H, Ren H, Bax A (1995) Rotational dynamics of calcium-free calmodulin studied by 15N NMR relaxation measurements. Eur J Biochem 230:1014–1024

    Article  Google Scholar 

  • Vega AJ, Fiat D (1976) Nuclear relaxation processes of paramagnetic complexes – slow motion case. Mol Phys 31:347–355

    Article  ADS  Google Scholar 

  • Wang CLA, Leavis PC, Horrocks WD, Gergely J (1981) Binding of lanthanide ions to troponin C. Biochemistry 20:2439–2444

    Article  Google Scholar 

  • Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA (1991) Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254:1608–1615

    Article  ADS  Google Scholar 

  • Yap KL, Ames JB, Swindells MB, Ikura M (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37:499–507

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Lewis Kay for his insights, advice, and encouragement, Brian Sykes for the kind gift of the expression vector, Monica Li, Grant Gay, and Olivier Julien for useful discussions, and Jun Xu for the help with spectral assignments. Some of the measurements were conducted at the National Magnetic Resonance Facility at Madison. This work was supported by Max Kade Foundation research grant to C. E. and NSF CAREER grant 044563 to N. R. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai R. Skrynnikov.

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichmüller, C., Skrynnikov, N.R. Observation of μs time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C. J Biomol NMR 37, 79–95 (2007). https://doi.org/10.1007/s10858-006-9105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9105-y

Keywords

Navigation