Skip to main content

Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner’s Guide

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Many thermodynamic quantities can be extracted from computer simulations that generate an ensemble of microstates according to the principles of statistical mechanics. Among these quantities is the free energy of binding of a small molecule to a macromolecule, such as a protein. Here, we present an introductory overview of a protocol that allows for the estimation of ligand binding free energies via molecular dynamics simulations. While we focus on the binding of organic molecules to proteins, the approach is in principle transferable to any pair of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mobley DL, Dill KA (2009) Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”. Structure 17:489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chipot C (2014) Frontiers in free-energy calculations of biological systems. Wiley Interdiscip Rev Comput Mol Sci 4(1):71–89

    Article  CAS  Google Scholar 

  3. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  4. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shirts MR, Mobley DL, Chodera JD (2007) Free energy calculations: ready for prime time? Annu Rep Comput Chem 3:41–59

    Article  CAS  Google Scholar 

  6. Aldeghi M, Bodkin MJ, Knapp S, Biggin PC (2017) A statistical analysis on the performance of MMPBSA versus absolute binding free energy calculations: bromodomains as a case study. J Chem Inf Model 57:2203–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2016) Accurate calculation of the absolute free energy of binding for drug molecules. Chem Sci 7:207–218

    Article  CAS  PubMed  Google Scholar 

  8. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2017) Predictions of ligand selectivity from absolute binding free energy calculations. J Am Chem Soc 139:946–957

    Article  CAS  PubMed  Google Scholar 

  9. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology, vol 86. Springer series in chemical physics. Springer, New York

    Book  Google Scholar 

  10. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253

    Article  CAS  PubMed  Google Scholar 

  11. Shirts MR (2012) Best practices in free energy calculations for drug design. Methods Mol Biol 819:425–467

    Article  CAS  PubMed  Google Scholar 

  12. Shirts MR, Mobley DL (2013) An introduction to best practices in free energy calculations. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols. Humana Press, Totowa, NJ, pp 271–311

    Chapter  Google Scholar 

  13. Zhou H-X, Gilson MK (2009) Theory of free energy and entropy in noncovalent binding. Chem Rev 109(9):4092–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. General IJ (2010) A note on the standard state’s binding free energy. J Chem Theory Comput 6(8):2520–2524

    Article  CAS  PubMed  Google Scholar 

  16. Gapsys V, Michielssens S, Peters JH, de Groot BL, Leonov H (2015) Calculation of binding free energies. In: Kukol A (ed) Molecular modeling of proteins. Springer New York, New York, NY, pp 173–209

    Google Scholar 

  17. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420–1426

    Article  CAS  Google Scholar 

  18. Widom B (1963) Some topics in the theory of fluids. J Chem Phys 39(11):2808–2812

    Article  CAS  Google Scholar 

  19. Lu N, Singh JK, Kofke DA (2003) Appropriate methods to combine forward and reverse free-energy perturbation averages. J Chem Phys 118(7):2977–2984

    Article  CAS  Google Scholar 

  20. Shirts MR, Pande VS (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys 122(14):144107

    Article  PubMed  Google Scholar 

  21. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22(2):245–268

    Article  Google Scholar 

  22. Shirts MR, Mobley DL, Brown SP (2010) Free-energy calculations in structure-based drug design. In: Merz KM, Ringe D, Reynolds CH (eds) Drug design. Cambridge University Press, Cambridge, pp 61–86

    Chapter  Google Scholar 

  23. Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91(14):140601

    Article  PubMed  Google Scholar 

  24. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paliwal H, Shirts MR (2011) A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods. J Chem Theory Comput 7(12):4115–4134

    Article  CAS  PubMed  Google Scholar 

  26. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  27. Homeyer N, Gohlke H (2013) FEW: a workflow tool for free energy calculations of ligand binding. J Comput Chem 34(11):965–973

    Article  CAS  PubMed  Google Scholar 

  28. Liu P, Dehez F, Cai W, Chipot C (2012) A toolkit for the analysis of free-energy perturbation calculations. J Chem Theory Comput 8(8):2606–2616

    Article  CAS  PubMed  Google Scholar 

  29. Pham TT, Shirts MR (2011) Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. J Chem Phys 135(3):034114

    Article  PubMed  Google Scholar 

  30. Klimovich P, Shirts M, Mobley D (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29(5):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej BD, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

  32. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551

    Article  CAS  Google Scholar 

  33. Mobley DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125(8):084902

    Article  PubMed  PubMed Central  Google Scholar 

  34. Evoli S, Mobley DL, Guzzi R, Rizzuti B (2016) Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys Chem Chem Phys 18(47):32358–32368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cappel D, Hall ML, Lenselink EB, Beuming T, Qi J, Bradner J, Sherman W (2016) Relative binding free energy calculations applied to protein homology models. J Chem Inf Model 56(12):2388–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371(4):1118–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mobley DL (2012) Let’s get honest about sampling. J Comput Aided Mol Des 26(1):93–95

    Article  CAS  PubMed  Google Scholar 

  38. Mobley DL, Klimovich PV (2012) Perspective: alchemical free energy calculations for drug discovery. J Chem Phys 137(23):230901

    Article  PubMed  PubMed Central  Google Scholar 

  39. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J, Dror R, Shaw D (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  44. Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  PubMed  Google Scholar 

  45. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput 8(9):3257–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  47. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell Jr AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  PubMed  Google Scholar 

  49. Vanommeslaeghe K, MacKerell AD (2012) Automation of the charmm general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang L, Roux B (2013) Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data. J Chem Theory Comput 9(8):3543–3556

    Article  CAS  Google Scholar 

  52. Betz RM, Walker RC (2015) Paramfit: automated optimization of force field parameters for molecular dynamics simulations. J Comput Chem 36(2):79–87

    Article  CAS  PubMed  Google Scholar 

  53. Shenfeld DK, Xu H, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E Stat Nonlin Soft Matter Phys 80(4):046705

    Article  PubMed  Google Scholar 

  54. Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet BK (2009) Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. J Mol Biol 394(4):747–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222:529–539

    Article  CAS  Google Scholar 

  56. Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127(21):214108

    Article  PubMed  Google Scholar 

  57. Zacharias M, Straatsma TP, McCammon JA (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J Chem Phys 100(12):9025–9031

    Article  CAS  Google Scholar 

  58. Gapsys V, Seeliger D, de Groot BL (2012) New soft-core potential function for molecular dynamics based alchemical free energy calculations. J Chem Theory Comput 8(7):2373–2382

    Article  CAS  PubMed  Google Scholar 

  59. Pitera JW, van Gunsteren WF (2002) A comparison of non-bonded scaling approaches for free energy calculations. Mol Simul 28(1–2):45–65

    Article  CAS  Google Scholar 

  60. Anwar J, Heyes DM (2005) Robust and accurate method for free-energy calculation of charged molecular systems. J Chem Phys 122(22):224117

    Article  PubMed  Google Scholar 

  61. Steinbrecher T, Joung I, Case DA (2011) Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations. J Comput Chem 32(15):3253–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139:184103

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hub JS, de Groot BL, Grubmüller H, Groenhof G (2014) Quantifying artifacts in ewald simulations of inhomogeneous systems with a net charge. J Chem Theory Comput 10(1):381–390

    Article  CAS  PubMed  Google Scholar 

  64. Rocklin GJ, Boyce SE, Fischer M, Fish I, Mobley DL, Shoichet BK, Dill KA (2013) Blind prediction of charged ligand binding affinities in a model binding site. J Mol Biol 425(22):4569–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shirts MR (2013) Simple quantitative tests to validate sampling from thermodynamic ensembles. J Chem Theory Comput 9(2):909–926

    Article  CAS  PubMed  Google Scholar 

  66. Goga N, Rzepiela AJ, de Vries AH, Marrink SJ, Berendsen HJC (2012) Efficient algorithms for langevin and DPD dynamics. J Chem Theory Comput 8:3637–3649

    Article  CAS  PubMed  Google Scholar 

  67. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  68. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17(3):1302–1322

    Article  CAS  Google Scholar 

  69. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119(11):5740–5761

    Article  CAS  Google Scholar 

  70. Kelly E, Seth M, Ziegler T (2004) Calculation of free energy profiles for elementary bimolecular reactions by ab initio molecular dynamics: sampling methods and thermostat considerations. J Phys Chem A 108(12):2167–2180

    Article  CAS  Google Scholar 

  71. Hess B, van der Vegt NFA (2006) Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B 110(35):17616–17626

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91(8):2798–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bussi G, Parrinello M (2008) Stochastic thermostats: comparison of local and global schemes. Comput Phys Commun 179(1–3):26–29

    Article  CAS  Google Scholar 

  74. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  75. Parinello M, Rahman A (1981) Polymorphic transitions in single crystals – a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  Google Scholar 

  76. Chodera JD, Shirts MR (2011) Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing. J Chem Phys 2011(135):194110

    Article  Google Scholar 

  77. Bussi G (2014) Hamiltonian replica exchange in GROMACS: a flexible implementation. Mol Phys 112(3–4):379–384

    Article  CAS  Google Scholar 

  78. Faraldo-Gómez JD, Roux B (2007) Characterization of conformational equilibria through Hamiltonian and temperature replica-exchange simulations: assessing entropic and environmental effects. J Comput Chem 28(10):1634–1647

    Article  PubMed  Google Scholar 

  79. Wang K, Chodera JD, Yang Y, Shirts MR (2013) Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. J Comput Aided Mol Des 27:989–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Woods CJ, Essex JW, King MA (2003) Enhanced configurational sampling in binding free-energy calculations. J Phys Chem B 107(49):13711–13718

    Article  CAS  Google Scholar 

  81. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACMI/IEEE conference on supercomputing. ACM Press, New York

    Google Scholar 

  82. Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput 3:26–41

    Article  CAS  PubMed  Google Scholar 

  83. Chodera JD (2016) A simple method for automated equilibration detection in molecular simulations. J Chem Theory Comput 12(4):1799–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111(45):13052–13063

    Article  CAS  PubMed  Google Scholar 

  85. Wennberg CL, Murtola T, Páll S, Abraham MJ, Hess B, Lindahl E (2015) Direct-space corrections enable fast and accurate lorentz–berthelot combination rule Lennard-Jones lattice summation. J Chem Theory Comput 11(12):5737–5746

    Article  CAS  PubMed  Google Scholar 

  86. Lim NM, Wang L, Abel R, Mobley DL (2016) Sensitivity in binding free energies due to protein reorganization. J Chem Theory Comput 12(9):4620–4631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mobley DL, Chodera JD, Dill KA (2007) Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J Chem Theory Comput 3:1231–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin Y-L, Meng Y, Jiang W, Roux B (2013) Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci U S A 110(5):1664–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li H, Fajer M, Yang W (2007) Simulated scaling method for localized enhanced sampling and simultaneous “alchemical” free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations. J Chem Phys 126(2):024106

    Article  PubMed  Google Scholar 

  90. Wang L, Berne BJ, Friesner RA (2012) On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities. Proc Natl Acad Sci U S A 109(6):1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R (2013) Modeling local structural rearrangements using FEP/REST: application to relative binding affinity predictions of CDK2 inhibitors. J Chem Theory Comput 9(2):1282–1293

    Article  CAS  PubMed  Google Scholar 

  92. Ross GA, Bodnarchuk MS, Essex JW (2015) Water sites, networks, and free energies with Grand Canonical Monte Carlo. J Am Chem Soc 137(47):14930–14943

    Article  CAS  PubMed  Google Scholar 

  93. Shirts MR, Pande VS (2005) Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys 122(13):134508

    Article  PubMed  Google Scholar 

  94. Mobley DL, Dumont ML, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charged force-fields: small molecule hydration free energies in explicit solvent. J Phys Chem B 111:2242–2254

    Article  CAS  PubMed  Google Scholar 

  95. Hünenberger PH, McCammon JA (1999) Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem 78:69–88

    Article  PubMed  Google Scholar 

  96. Lin Y-L, Aleksandrov A, Simonson T, Roux B (2014) An overview of electrostatic free energy computations for solutions and proteins. J Chem Theory Comput 10(7):2690–2709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The EPSRC and Evotec via the Systems Approaches to Biomedical Sciences Doctoral Training Centre (EP/G037280/1) support M.A. J.B. is supported by the EPSRC/MRC via the Systems Approaches to Biomedical Sciences Doctoral Training Centre (EP/G037280/1) with additional support from GSK. We thank David Mobley (University of California, Irvine), John Chodera (MSKCC), and Michael Shirts (University of Colorado, Boulder) for sharing their extensive experience on alchemical free energy calculations through publicly available platforms and personal communications. Work in PCB’s laboratory is currently supported by the MRC, BBSRC, and the John Fell Fund. We thank the Advanced Research Computing (ARC) facility, the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London (grant no. EP/J003921/1), and the ARCHER UK National Supercomputing Services for computer time granted via the UK High-End Computing Consortium for Biomolecular Simulation, HECBioSim (http://www.hecbiosim.ac.uk), supported by EPSRC (grant no. EP/L000253/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Biggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aldeghi, M., Bluck, J.P., Biggin, P.C. (2018). Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner’s Guide. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics