Skip to main content
Log in

Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioresorbable polylactides are one of the most important materials for tissue engineering applications. In this work we have prepared scaffolds based on the two optically pure stereoisomers: poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA). The crystalline structure and morphology were evaluated by DSC, AFM and X-ray diffraction. PLLA and PDLA crystallized in the α form and the equimolar PLLA/PDLA blend, crystallized in the stereocomplex form, were analyzed by a proliferation assay in contact with mouse L-929 and human fibroblasts and neonatal keratinocytes for in vitro cytotoxicity evaluation. SEM analysis was conducted to determine the cell morphology, spreading and adhesion when in contact with the different polymer surfaces. The preserved proliferation rate showed in MTT tests and the high colonization on the surface of polylactides observed by SEM denote that PLLA, PDLA and the equimolar PLLA/PDLA are useful biodegradable materials in which the crystalline characteristics can be tuned for specific biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  Google Scholar 

  2. Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    Article  CAS  Google Scholar 

  3. Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials. 2003;24:2267–75.

    Article  CAS  Google Scholar 

  4. Salgado AJ, Coutinho OP, Reis RL. Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng. 2004;10:465–74.

    Article  CAS  Google Scholar 

  5. Thomsom RC, Mikos AG, Beahm E, Lemon JC, Saterfield WC, Aufdemorte TB, Miller MJ. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials. 1999;20:2007–18.

    Article  Google Scholar 

  6. Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J Mater Sci Mater Med. 2004;15:419–22.

    Article  CAS  Google Scholar 

  7. Ren J, Ren T, Zhao P, Huang Y, Pan K. Repair of mandibular defects using MSCs-seeded biodegradable polyester porous scaffolds. J Biomater Sci Polym Ed. 2007;18:505–17.

    Article  CAS  Google Scholar 

  8. Wang S, Cui W, Bei J. Bulk and surface modifications of polylactide. Anal Bioanal Chem. 2005;381:547–56.

    Article  CAS  Google Scholar 

  9. Reis RL, Cunha AM. Starch and starch based thermoplastics. Biological and biomimetic materials. Amsterdam: Pergamon-Elsevier Science; 2001. p. 8810–6.

    Google Scholar 

  10. Vainionpaa S, Rokkanen P, Tormala P. Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci. 1989;14:679–716.

    Article  CAS  Google Scholar 

  11. De Jong WH, Eelco Bergsma J, Robinson JE, Bos RM. Tissue response to partially in vitro predegraded poly-L-lactide implants. Biomaterials. 2005;26:1781–91.

    Article  Google Scholar 

  12. Okamoto Y. “Trends in polymer science” chiral polymers. Prog Polym Sci. 2000;25:159–62.

    Article  CAS  Google Scholar 

  13. Sarasua JR, Prud’homme RE, Wisniewski M, LeBorgne A, Spassky N. Crystallization and melting behaviour of polylactides. Macromolecules. 1998;31:3895–905.

    Article  CAS  Google Scholar 

  14. Södergard A, Stolt M. Properties of lactic acid based copolymers, their correlation with composition. Prog Polym Sci. 2002;27:1123–63.

    Article  Google Scholar 

  15. De Santis P, Kovacs AJ. Molecular conformation of poly(S-lactid acid). Biopolymers. 1968;6:299–306.

    Article  Google Scholar 

  16. Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tsuji H, Hion H, Ikada Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J Macromol Sci B. 1991;30:119–40.

    Article  CAS  Google Scholar 

  17. Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules. 1987;20:904–6.

    Article  CAS  Google Scholar 

  18. Brizzolara D, Cantow HJ, Diedericks K, Seller E, Domb J. Mechanism of the stereocomplex formation between enantiomeric poly(lactides)s. Macromolecules. 1996;29:191–7.

    Article  CAS  Google Scholar 

  19. Sarasua JR, López-Rodríguez N, López-Arraiza A, Meaurio E. Stereoselective crystallization and specific interactions in polylactides. Macromolecules. 2005;38:8362–71.

    Article  CAS  Google Scholar 

  20. Sarasua JR, López-Arraiza A, Balerdi P, Maiza I. Crystallization, thermal behaviour of optically pure polylactides, their blends. J Mater Sci. 2005;40:1855–62.

    Article  CAS  Google Scholar 

  21. Sarasua JR, López-Arraiza A, Balerdi P, Maiza I. Crystallization, mechanical properties of optically pure polylactides, their blends. Polym Eng Sci. 2005;45:745–53.

    Article  CAS  Google Scholar 

  22. Li S, McCarthy S. Further investigations on the hydrolytic degradation of poly(DL-lactide). Biomaterials. 1999;201:35–44.

    Article  Google Scholar 

  23. Tsuji H, Miyauchi S. Poly(L-lactide): VI effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region. Polym Degrad Stabil. 2001;71:415–24.

    Article  CAS  Google Scholar 

  24. Tsuji H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Biomaterials. 2003;24:537–47.

    Article  CAS  Google Scholar 

  25. Karst D, Yang Y. Molecular modelling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer. 2006;47:4845–50.

    Article  CAS  Google Scholar 

  26. Bernal-Lara TE, Liu RF, Hiltner A, Baer E. Structure and thermal stability of polyethylene nanolayers. Polymer. 2005;46:3043–55.

    Article  CAS  Google Scholar 

  27. Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y, Dói Y. Crystal growth in poly(L-lactide) thin film revealed by in situ atomic force microscopy. Macromol Chem Phys. 2003;204:1822–31.

    Article  CAS  Google Scholar 

  28. Meaurio E, López-Rodríguez N, Sarasua JR. Infrared spectrum of poly(L-lactide): application to crystallinity studies. Macromolecules. 2006;39:9291–301.

    Article  CAS  Google Scholar 

  29. Fischer EW, Stertzel HJ, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemicals reactions. Kolloid Z Z Polym. 1973;251:980–90.

    Article  CAS  Google Scholar 

  30. Nakagawa M, Teraoka F, Fujimoto S, Hamada Y, Kibayashi H, Takahashi J. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res B. 2006;77:112–8.

    Google Scholar 

  31. Yamaguchi M, Shinbo T, Kanamori T, Wang PC, Niwa M, Kawakami H, Nagaoka S, Hirakawa K, Kamiya M. Surface modification of poly(L-lactic acid) affects initial cell attachment cell morphology, and cell growth. J Artif Organs. 2004;7:187–93.

    Article  CAS  Google Scholar 

  32. Park A, Cima LG. In vitro cell response to differences in poly(L-lactide) crystallinity. J Biomed Mater Res B. 1996;31:117–30.

    Article  CAS  Google Scholar 

  33. Biggs DL, Lengsfeld CS, Hybertson BM, Ka-yun NG, Manning MC, Randolph TW. In vitro, in vivo evaluation of the effects of PLA microparticle crystallinity on cellular response. J Control Release. 2003;92:147–61.

    Article  CAS  Google Scholar 

  34. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B. 2008;14:61–86.

    Article  CAS  Google Scholar 

  35. Yi Q, Xintao W, Li L, He B, Nie Y, Wu Y, Zhang Z, Gu Z. The chiral effects on the responses of osteoblastic cells to the polymeric substrates. Eur Polym J. 2009;45:1970–8.

    Article  CAS  Google Scholar 

  36. ISO document 10993-12 Biological compatibility of medical devices. Sample Preparation and Reference Materials 1992.

  37. ISO document 10993-5 Biological compatibility of medical devices. Test for cytotoxicity: in vitro methods. 1992.

  38. Chen H, Cebe P. Investigation of the rigid amorphous fraction in Nylon-6. J Therm Anal Calorim. 2007;89:417–25.

    Article  CAS  Google Scholar 

  39. Ohtani Y, Okumura K, Kawaguchi A. Crystallization behavior of amorphous poly(L-lactide). J Macromol Sci B. 2003;42:875–88.

    Article  Google Scholar 

  40. Sperling LH. Introduction to physical polymer science. New York: Wiley; 1992.

    Google Scholar 

  41. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support from the Basque Government Department of Education, University and Research (consolidated research groups GIC10/152-IT-334-10 and project IT431-07) and Department of Health (PI2005111043). We also thank SGIKER from UPV/EHU for WAXD and SEM measurements and the support of CIC Biomagune and Biobasque agency (Project Etortek IE07-201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Sarasua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarasua, J.R., López-Rodríguez, N., Zuza, E. et al. Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications. J Mater Sci: Mater Med 22, 2513–2523 (2011). https://doi.org/10.1007/s10856-011-4425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4425-1

Keywords

Navigation