Skip to main content
Log in

In Vitro Study of Degradation Behavior, Cytotoxicity, and Cell Adhesion of the Atactic Polylactic Acid for Biomedical Purposes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

An atactic poly-d,l-lactide (PLA) is obtained via ring-opening polymerization (ROP) of lactide stereoisomers mixture catalyzed by the magnesium and calcium acenaphthylenebisamido complexes. The polymer is characterized by gel-permeation chromatography, NMR spectroscopy, and mass spectrometry. The hydrolytic degradation behavior, cytotoxicity, and cell adhesion of the resulting PLA are evaluated. The polymer degrades in phosphate-buffered saline, releasing water-soluble low molecular products that significantly influence dermal fibroblast growth. Polymer demonstrates no cytotoxicity that, along with cell adhesion and their high proliferative activity toward the PLA obtained, proves its biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104:6147

    PubMed  CAS  Google Scholar 

  2. Middleton JC, Tipton AJ (2000) Biomaterials 21:2335

    PubMed  CAS  Google Scholar 

  3. Zhao Y, Fu J, Ng DKP, Wu C (2004) Macromol Biosci 4:901

    PubMed  CAS  Google Scholar 

  4. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552

    CAS  Google Scholar 

  5. Poryvaeva EA, Egiazaryan TA, Makarov VM, Moskalev MV, Razborov DA, Fedyushkin IL (2017) Russ J Org Chem 53:344

    CAS  Google Scholar 

  6. Rim KT, Koo KH, Park JS (2013) Saf Health Work 4:12

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Rim K-T (2016) Toxicol Environ Health Sci 8:189

    Google Scholar 

  8. Xiao B, Ji Y, Cui M (1997) Zhonghua yu fang yi xue za zhi [Chin J Prev Med] 31:228

    CAS  Google Scholar 

  9. Dai YC, Li J, Li J, Yu L, Dai G, Hu AG, Yuan LY, Wen Z (2002) In Vitro Cell Dev Biol-Anim 38:373

    PubMed  CAS  Google Scholar 

  10. Liu SS, Lu D, Miao LF, Xiong QY, Chen XP, Wang Y, Guo F (2010) Zhonghua fu chan ke za zhi 45:609

    PubMed  Google Scholar 

  11. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Small 5:2848

    PubMed  CAS  Google Scholar 

  12. Guo F, Lou YL, Feng NH, Li GH, Xie A, Huang XM, Wang Y (2010) Biometals 23:669

    PubMed  CAS  Google Scholar 

  13. Guo F, Guo X, Xie A, Lou YL, Wang Y (2011) Biol Trace Elem Res 142:693

    PubMed  CAS  Google Scholar 

  14. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Biochem Biophys Res Commun 342:86

    PubMed  CAS  Google Scholar 

  15. Pierscionek BK, Li YB, Yasseen AA, Colhoun LM, Schachar RA, Chen W (2010) Nanotechnology 21:035102

    PubMed  Google Scholar 

  16. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S (2013) Nanomedicine 8:1483

    PubMed  CAS  Google Scholar 

  17. Urayama H, Moon SI, Kimura Y (2003) Macromol Mater Eng 288:137

    CAS  Google Scholar 

  18. Karst D, Yang YQ (2008) Macromol Chem Phys 209:168

    CAS  Google Scholar 

  19. Rahaman MH, Tsuji H (2013) Polym Degrad Stab 98:709

    CAS  Google Scholar 

  20. Li Y, Xin SY, Bian YJ, Dong QL, Han CY, Xu K, Dong LS (2015) Rsc Adv 5:24352

    CAS  Google Scholar 

  21. Migliaresi C, Fambri L, Cohn D (1994) J Biomater Sci Polym Ed 5:591

    PubMed  CAS  Google Scholar 

  22. Grayson ACR, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R (2004) J Biomater Sci Polym Ed 15:1281

    PubMed  CAS  Google Scholar 

  23. Tsuji H, Miyauchi S (2001) Biomacromol 2:597

    CAS  Google Scholar 

  24. Tsuji H (2003) Biomaterials 24:537

    PubMed  CAS  Google Scholar 

  25. Ghorpade VM, Gennadios A, Hanna MA (2001) Biores Technol 76:57

    CAS  Google Scholar 

  26. Longieras A, Tanchette J-B, Erre D, Braud C, Copinet A (2007) J Polym Environ 15:200

    CAS  Google Scholar 

  27. Sangwan P, Wu DY (2008) Macromol Biosci 8:304

    PubMed  CAS  Google Scholar 

  28. Saadi Z, Rasmont A, Cesar G, Bewa H, Benguigui L (2012) J Polym Environ 20:273

    CAS  Google Scholar 

  29. Jarerat A, Tokiwa Y (2001) Macromol Biosci 1:136

    CAS  Google Scholar 

  30. Watanabe M, Kawai F, Tsuboi S, Nakatsu S, Ohara H (2007) Macromol Theory Simul 16:619

    CAS  Google Scholar 

  31. Karamanlioglu M, Robson GD (2013) Polym Degrad Stab 98:2063

    CAS  Google Scholar 

  32. Walczak M, Swiontek Brzezinska M, Sionkowska A, Michalska M, Jankiewicz U, Deja-Sikora E (2015) Colloids Surf B 136:340

    CAS  Google Scholar 

  33. Satti SM, Shah AA, Auras R, Marsh TL (2017) Polym Degrad Stab 144:392

    CAS  Google Scholar 

  34. Bubpachat T, Sombatsompop N, Prapagdee B (2018) Polym Degrad Stab 152:75

    CAS  Google Scholar 

  35. Rumbo C, Tamayo-Ramos JA, Caso MF, Rinaldi A, Romero-Santacreu L, Quesada R, Cuesta-Lopez S (2018) ACS Appl Mater Interfaces 10:11467

    PubMed  CAS  Google Scholar 

  36. Kricheldorf HR, Kreiser-Saunders I, Stricker A (2000) Macromolecules 33:702

    CAS  Google Scholar 

  37. Kowalski A, Duda A, Penczek S (2000) Macromolecules 33:7359

    CAS  Google Scholar 

  38. Hege CS, Schiller SM (2014) Green Chem 16:1410

    CAS  Google Scholar 

  39. Carpentier JF, Sarazin Y (2013) In: Harder S (ed) Alkaline-earth metal compounds: oddities and applications, vol 45. Springer, Berlin, p 141

    Google Scholar 

  40. Sauer A, Kapelski A, Fliedel C, Dagorne S, Kol M, Okuda J (2013) Dalton Trans 42:9007

    PubMed  CAS  Google Scholar 

  41. Lyubov DM, Tolpygin AO, Trifonov AA (2019) Coord Chem Rev 392:83

    CAS  Google Scholar 

  42. Kazarina OV, Gourlaouen C, Karmazin L, Morozov AG, Fedushkin IL, Dagorne S (2018) Dalton Trans 47:13800

    PubMed  CAS  Google Scholar 

  43. Fedushkin IL, Morozov AG, Chudakova VA, Fukin GK, Cherkasov VK (2009) Eur J Inorg Chem. https://doi.org/10.1002/ejic.200900710

    Article  Google Scholar 

  44. Morozov AG, Markelova ES, Fedyushkin IL (2018) Russ J Appl Chem 91:1044

    CAS  Google Scholar 

  45. Devine DM (2017) Bioresorbable polymers and their biomedical applications. Smithers Rapra, Shawbury, p 43

    Google Scholar 

  46. Fedushkin IL, Skatova AA, Chudakova VA, Fukin GK, Dechert S, Schumann H (2003) Eur J Inorg Chem 2003:3336

    Google Scholar 

  47. Save M, Schappacher M, Soum A (2002) Macromol Chem Phys 203:889

    CAS  Google Scholar 

  48. Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) J Am Chem Soc 123:3229

    PubMed  CAS  Google Scholar 

  49. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Cytotherapy 8:315

    PubMed  CAS  Google Scholar 

  50. Egiazaryan TA, Makarov VM, Moskalev MV, Razborov DA, Fedushkin IL (2019) Mendeleev Commun 29:648

    CAS  Google Scholar 

  51. Feng L, Chen X, Sun B, Bian X, Chen Z (2011) Polym Degrad Stab 96:1745

    CAS  Google Scholar 

  52. Thakur KAM, Kean RT, Hall ES, Kolstad JJ, Lindgren TA, Doscotch MA, Siepmann JI, Munson EJ (1997) Macromolecules 30:2422

    CAS  Google Scholar 

  53. Zell MT, Padden BE, Paterick AJ, Thakur KAM, Kean RT, Hillmyer MA, Munson EJ (2002) Macromolecules 35:7700

    CAS  Google Scholar 

  54. Jamshidi K, Hyon SH, Ikada Y (1988) Polymer 29:2229

    CAS  Google Scholar 

  55. Tsuji H (2010) In: Auras R (ed) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley-VCH, Weinheim, p 345

    Google Scholar 

  56. Göpferich A (1996) Biomaterials 17:103

    PubMed  Google Scholar 

  57. Cristina AM, Sara F, Fausto G, Vincenzo P, Rocchina S, Claudio V (2018) J Polym Environ 26:4396

    CAS  Google Scholar 

  58. Mosmann T (1983) J Immunol Methods 65:55

    CAS  Google Scholar 

  59. Shanmugam S, Gopal B (2014) Appl Surf Sci 303:277

    CAS  Google Scholar 

  60. Groussard C, Morel I, Chevanne M, Monnier M, Cillard J, Delamarche A (2000) J Appl Physiol 89:169

    PubMed  CAS  Google Scholar 

  61. Lampe KJ, Namba RM, Silverman TR, Bjugstad KB, Mahoney MJ (2009) Biotechnol Bioeng 103:1214

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Lampe KJ, Bjugstad KB, Mahoney MJ (2010) Tissue Eng A 16:1857

    CAS  Google Scholar 

  63. Murphy WL, McDevitt TC, Engler AJ (2014) Nat Mater 13:547

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Singh RP, Ramarao P (2013) Toxicol Sci 136:131

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant 18-13-00434). The source lactide was obtained in the framework of the Russian state assignment. The study was carried out using the equipment of "Analytical Center of the IOMC RAS" (Zentr Kollektivnogo Polzovaniya) in G.A. Razuvaev Institute of Organometallic Chemistry RAS with the financial support of the Federal objective program "Research and development in priority directions of the advancement of science and technology complex of Russia for 2014–2020" (Unique project identifier is RFMEFI62120X0040). We are grateful to the Institute of Chemistry of TU Berlin for the analysis of polymers by ESI mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Morozov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.G., Razborov, D.A., Egiazaryan, T.A. et al. In Vitro Study of Degradation Behavior, Cytotoxicity, and Cell Adhesion of the Atactic Polylactic Acid for Biomedical Purposes. J Polym Environ 28, 2652–2660 (2020). https://doi.org/10.1007/s10924-020-01803-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01803-x

Keywords

Navigation