Skip to main content
Log in

Hyaluronic Acid and Chitosan Surface Grafted Polylactide Single Crystals as Hydrophilic Building Blocks for Scaffold Materials

  • Medical Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Polylactide has a well-known biocompatibility and processability, but its surface hydrophobicity could limit their use as a proper scaffold for cell growth and proliferation. The present work aims to fabricate the polylactide scaffolds by a bottom-up approach from pre-modified building blocks as an efficient way to overcome such a challenge and to provide a surface with a spatially organized chemical structure. Pre-modified polylactide single crystals (PLLAsc) with chitosan or hyaluronic acid, which are hydrophilic and bioactive macromolecules, were assembled into three-dimensional scaffolds. PLLAsc were hydrolyzed to introduce carboxylic groups at the surface and then the grafting reactions were carried out by carbodiimide chemistry. Although chitosan was grafted directly, the hydrolyzed surface was endowed with adipic acid dihydrazide as a spacer before hyaluronic acid grafting. The analyses of the modified surfaces verified the enhancement in surface hydrophilicity without any drastic effects on single crystals properties. By fabricating the scaffolds by using a compression molding salt leaching technique in the absence of heat or gluing materials, they were found to have an open interconnected structure, a hydrophilic surface and sustainable mechanical properties. Biological activity of scaffolds was examined by using mouse fibroblasts. Scaffolds having hyaluronic acid and chitosan surface grafted PLLAsc showed better interface for cell growth than pristine ones. Obviously, prefunctionalized PLLAsc with biomacromolecules could be used as proper building blocks for designing polymer scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kuznetsova, A. Ageykin, A. Koroleva, A. Deiwick, A. Shpichka, A. Solovieva, S. Kostjuk, A. Meleshina, S. Rodimova, A. Akovanceva, and D. Butnaru, Biofabrication 9, 2 (2017).

    Article  CAS  Google Scholar 

  2. B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, Adv. Drug Delivery Rev. 107, 163 (2016).

    Article  CAS  Google Scholar 

  3. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci. 35, 3 (2010).

    Article  CAS  Google Scholar 

  4. K. Cai, K. Yao, Y. Cui, Z. Yang, X. Li, H. Xie, T. Qing, and L. Gao, Biomaterials 23, 1603 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. V. Korzhikov-Vlakh, M. Krylova, E. Sinitsyna, E. Ivankova, I. Averianov, and T. B. Tennikova, Polymers 8, 418 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  6. H. J. Chung and T. G. Park, Adv. Drug Delivery Rev. 59, 249 (2007).

    Article  CAS  Google Scholar 

  7. A. Bakry, A. Martinelli, M. Bizzarri, A. Cucina, L. D’Ilario, I. Francolini, A. Piozzi, and S. Proietti, Polym. Int. 61, 7 (2012).

    Article  CAS  Google Scholar 

  8. L. D’ilario, I. Francolini, A. Martinelli, and A. Piozzi, Macromol. Rapid Commun. 28, 1900 (2007).

    Article  CAS  Google Scholar 

  9. G. Casini, L. Petrone, A. Bakry, I. Francolini, P. Di Bonito, C. Giorgi, A. Martinelli, A. Piozzi, and L. D’Ilario, J. Controlled Release 48, 1 (2010).

    Google Scholar 

  10. S. Wang, W. Cui, and J. Bei, Anal. Bioanal. Chem. 381, 3 (2005).

    Article  CAS  Google Scholar 

  11. S. Zeng, J. Ye, Z. Cui, J. Si, Q. Wang, X. Wang, K. Peng, and W. Chen, Mater. Sci. Eng., C 77, 92 (2017).

    Article  CAS  Google Scholar 

  12. H. S. Yoo, E. A. Lee, J. J. Yoon, and T. G. Park, Biomaterials 26, 14 (2005).

    Google Scholar 

  13. I. V. Averianov, V. A. Korzhikov, and T. B. Tennikova, Polym. Sci., Ser. B 57, 4 (2015).

    Article  CAS  Google Scholar 

  14. F. Causa, P. A. Netti, and L. Ambrosio, Biomaterials 28, 34 (2007).

    Article  CAS  Google Scholar 

  15. A. Luciani, V. Coccoli, S. Orsi, L. Ambrosio, and P. A. Netti, Biomaterials 29, 36 (2008).

    Article  CAS  Google Scholar 

  16. T. Iwata and Y. Doi, Macromolecules 31, 8 (1998).

    Google Scholar 

  17. I. K. Kang, B. K. Kwon, J. H. Lee, and H. B. Lee, Biomaterials 14, 10 (1993).

    Article  Google Scholar 

  18. Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biomaterials 24, 21 (2003).

    Google Scholar 

  19. J. S. Pieper, T. Hafmans, J. H. Veerkamp, and T. H. van Kuppevelt, Biomaterials 21, 6 (2000).

    Google Scholar 

  20. E. W. Fischer, H. J. Sterzel, and G. Wagner, Kolloid Z. Z. Polym. 251, 11 (1973).

    Google Scholar 

  21. K. M. Ashraf, C. Wang, S. S. Nair, K. J. Wynne, D. A. Higgins, and M. M. Collinson, Langmuir 33, 17 (2017).

    Article  CAS  Google Scholar 

  22. R. B. Diego, J. M. Estellés, J. A. Sanz, J. M. García-Aznar, and M. S. Sánchez, J. Biomed. Mater. Res., Part B 81, 2 (2007).

    Google Scholar 

  23. S. Van Bael, T. Desmet, Y. C. Chai, G. Pyka, P. Dubruel, J. P. Kruth, and J. Schrooten, Mater. Sci. Eng., C 33, 6 (2013).

    Article  CAS  Google Scholar 

  24. B. Kalb and J. Pennings, Polymer 21, 6 (1980).

    Google Scholar 

  25. J. K. Park, J. Yeom, E. J. Oh, M. Reddy, J. Y. Kim, D.W. Cho, H. P. Lim, N. S. Kim, S. W. Park, H. I. Shin, and D. J. Yang, Acta Biomater. 5, 9 (2009).

    Google Scholar 

  26. F. A. Morsy, S. Y. Elsayad, A. Bakry, and M. A. Eid, Surf. Coat. Int., Part B 89, 1 (2006).

    Article  Google Scholar 

  27. M. Mason, K. P. Vercruysse, K. R. Kirker, R. Frisch, D. M. Marecak, G. D. Prestwich, and W. G. Pitt, Biomaterials 2, 1 (2000).

    Google Scholar 

  28. A. Bakry, R. Aversano, L. D’Ilario, V. Di Lisio, I. Francolini, A. Piozzi, and A. Martinelli, J. Appl. Polym. Sci. 133, 19 (2016).

    Article  CAS  Google Scholar 

  29. C. R. Chandraiahgari, A. De Bellis, G. Martinelli, A. Bakry, A. Tamburrano, and M. Sarto, in Proceedings of the IEEE International Conference on Nanotechnology (IEEE-NANO 2015), Rome, Italy, 2015 (Rome, 2015), p. 1346.

    Google Scholar 

  30. X. Niu, Q. Feng, M. Wang, X. Guo, and Q. Zheng, Polym. Degrad. Stab. 94, 2 (2009).

    Article  CAS  Google Scholar 

  31. A. Martinelli, A. Bakry, L. D’Ilario, I. Francolini, A. Piozzi, and V. Taresco, Eur. J. Pharm. Biopharm. 88, 2 (2014).

    Article  CAS  Google Scholar 

  32. A. S. Ismail, M. S. Darwish, and E. A. Ismail, Egypt. J. Pet. 26, 1 (2017).

    Article  Google Scholar 

  33. F. S. Palumbo, G. Pitarresi, D. Mandracchia, G. Tripodo, and G. Giammona, Carbohydr. Polym. 66, 3 (2006).

    Article  CAS  Google Scholar 

  34. F. Donghui, W. Beibei, X. Zheng, and G. Qisheng, J. Wuhan Univ. Technol., Mater. Sci. Ed. 21, 3 (2006).

    Google Scholar 

  35. J. D. Andrade, L. M. Smith, and D. E. Gregonis, in Surface and Interfacial Aspects of Biomedical Polymers (Springer, Boston, MA, 1985), pp. 249–292.

    Book  Google Scholar 

  36. R. H. Dettre and R. E. Johnson, Jr., J. Phys. Chem. 69, 5 (1965).

    Google Scholar 

  37. Y. K. Gong, F. Mwale, M. R. Wertheimer, and F. M. Winnik, J. Biomater. Sci., Polym. Ed. 15, 11 (2004).

    Article  Google Scholar 

  38. Y. Inoue, J. Watanabe, and K. Ishihara, J. Colloid Interface Sci. 274, 2 (2004).

    Google Scholar 

  39. S. Sosnowski, P. Woźniak, and M. Lewandowska-Szumieł, Macromol. Biosci. 6, 6 (2006).

    Article  CAS  Google Scholar 

  40. U. D’Amora, M. D’Este, D. Eglin, F. Safari, C. M. Sprecher, A. Gloria, R. De Santis, M. Alini, and L. Ambrosio, J. Tissue Eng. Regener. Med. 12, 321 (2018).

    Article  CAS  Google Scholar 

  41. L. Wu, J. Zhang, D. Jing, and J. Ding, J. Biomed. Mater. Res., Part A 76, 2 (2006).

    Google Scholar 

  42. A. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, J. Biomed. Mater. Res. 51, 4 (2000).

    Article  Google Scholar 

  43. S. G. Hu, C. H. Jou, and M. C. Yang, Biomaterials 24, 16 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Bakry.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakry, A., Darwish, M.S.A. Hyaluronic Acid and Chitosan Surface Grafted Polylactide Single Crystals as Hydrophilic Building Blocks for Scaffold Materials. Polym. Sci. Ser. A 60, 757–769 (2018). https://doi.org/10.1134/S0965545X18070015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18070015

Navigation