Skip to main content
Log in

Bulk and surface modifications of polylactide

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article reviews various methods of modifying the bulk and surface properties of poly(lactic acid) (PLA) so that the polymer may be used as a drug carrier in a drug delivery system (DDS) and as a cell scaffold in tissue engineering. Copolymerization of lactide with other lactone-type monomers or monomers with functional groups such as malic acid, copolymerization of lactide with macromolecular monomer such as poly(ethylene glycol) (PEG) or dextran, as well as blending polylactide and natural derivatives and other methods of bulk modification are discussed. Surface modifications of PLA-type copolymers, such as surface coating, chemical modification, and plasma treatment are described. Cell culture technology proves the efficiency of bulk and surface modification and the potential application of PLA in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4a–d
Fig. 5a–d

Similar content being viewed by others

References

  1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Chem Rev 99:3181–3198

    Article  Google Scholar 

  2. Jurgens CH, Kricheldorf HR, Kreiser-Saunders I (1998) Development of a biodegradable wound covering and first clinical results. In: Walenkamp GHIM (ed) Biomaterials in surgery. Thieme-Verlag, New York, pp 112–120

    Google Scholar 

  3. Leenslag JW, Pennings AJ, Bos RR, Rozema FR, Boering G (1987) Biomaterials 8:70–73

    Article  Google Scholar 

  4. Shi FY, Gross RA, Rutherford DR (1996) Micromolecules 29:10–17

    Article  Google Scholar 

  5. Shi FY, Ashby R, Gross RA (1996) Macromolecules 29:7753–7758

    Article  Google Scholar 

  6. Kronenthal RL (1974) Biodegradable polymers in medicine and surgery. In: Kronenthal RL, User Z, Martin E (ed) Polymers in medicine and surgery. Plenum, New York, pp 119–137

    Google Scholar 

  7. Wang SG, Cai Q, Bei JZ (2003) Macromol Symp 195:263–268

    Article  Google Scholar 

  8. Vert M, Li S, Spenlehauer G, Guerin P (1992) J Mater Sci Mater Med 3:432–446

    Article  Google Scholar 

  9. Marshall D (1998) European Plastics News (March), pp 23–24

  10. Wang SG, Cui WJ, Li GM, Cai Q, Zhi G, Zhao YY, Yang B, Xu Y (2003) China 46:371–378

    Google Scholar 

  11. Wang SG, Cai Q, Hou JW, Bei JZ, Zhang T, Yang J, Wan YQ (2003) J Biomed Mater Res 66A:522–531

    Article  Google Scholar 

  12. Wang SG (1997) Chem Commun 2:45–47

    Google Scholar 

  13. Cao X, Shoichet MS (1999) Biomaterials 20:329–339

    Article  Google Scholar 

  14. Mooney DJ, Breuer MD, Mcnamara K, Vacanti JP, Langer R (1995) Tissue Eng 1:107–118

    Google Scholar 

  15. Qian HT, Bei JZ, Wang SG (2000) Polym Degrad Stab 68:423–429

    Article  Google Scholar 

  16. Cai Q, Bei JZ, Wang SG (2000) J Biomed Sci Polym Ed 11:273–288

    Article  Google Scholar 

  17. Wang SG, Wan YQ, Cai Q, He B, Chen WN (2004) Chem Res Chin Univ 20:191–194

    Google Scholar 

  18. Deasi NP, Hubbell JA (1991) J Biomed Mater Res 25:829–834

    Google Scholar 

  19. Fuerteges F, Abuchowski A (1990) J Control Release 11:139–148

    Google Scholar 

  20. Yokoyama M, Okano R, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K (1991) Cancer Res 51:3229–3236

    Google Scholar 

  21. Cohn D, Younes H (1988) J Biomed Mater Res 22:993–995

    Google Scholar 

  22. Deng XM, Xiong CD (1990) J Polym Sci Polym Lett Ed 28:411–416

    Google Scholar 

  23. Ferruti P, Penco M, D’Addato P, Ranucci E, Deghenghi R (1995) Biomaterials 16:1423–1428

    Article  Google Scholar 

  24. Penco M, Marcioni S, Ferruti P, D’ Antone SR (1996) Biomaterials 17:1583–1590

    Article  Google Scholar 

  25. Krickeldorf HR, Haack JM (1993) Macromol Chem Phys 194:715–725

    Article  Google Scholar 

  26. Krickeldorf HR, Boettcher C (1993) Mackromol Chem Mackromol Symp 73:47–51

    Google Scholar 

  27. Stevels WM, Ankone, MJK, Dijkstra PJ, Feijen J (1995) Macromol Chem Phys 196:3687–3694

    Article  Google Scholar 

  28. Cerrai P, Tricoli M, Lelli L, Guerra GD, Sbarbati D, Guerra R, Casone MG, Giusti P (1994) J Mater Sci Mater Med 5:308–316

    Article  Google Scholar 

  29. Cai Q, Bei JZ, Wang SG (2000) Polym Adv Technol 11:156–166

    Article  Google Scholar 

  30. Soo HE, Soo HK, Yang KH, Young HK (2002) J Polym Sci Pol Chem 40:2545–2555

    Google Scholar 

  31. Zhu Z, Xiong C, Zhang L, Yuan M, Deng X (1999) Eur Polym J 35:1821–1828

    Article  Google Scholar 

  32. Luo WJ, Li SM, Wang SG, Bei JZ (2002) J Appl Polym Sci 84:1729–1736

    Article  Google Scholar 

  33. Chen WN, Luo WJ, Wang SG, Bei JZ (2003) Polym Advan Technol 14:245–253

    Google Scholar 

  34. Lang MD, Bei JZ, Wang SG (1999) J Biomat Sci–Polym E 4:501–512

    Google Scholar 

  35. Chen DR, Chen HL, Wang SG, Bei JZ (2000) Polym Int 49:269–276

    Google Scholar 

  36. Chen HL, Bei JZ, Wang SG (2000) Polym Advan Technol 11:180–184

    Google Scholar 

  37. Michael AC, Mark WG (2001) J Am Chem Soc 123:2905–2906

    Article  Google Scholar 

  38. Li YX, Kissel T (1998) Polymer 39:4421–4427

    Article  Google Scholar 

  39. Pistel KF, Bittner B, Koll H, Winter G, Kissel T (1999) J Control Release 59:309–325

    Article  Google Scholar 

  40. Roberts JC, Bhalgat MK, Zera RT (1996) J Biomed Mater Res 30:53–65

    Article  Google Scholar 

  41. Zhao YL, Cai Q, Jiang J, Shuai XT, Bei JZ, Chen CF, Xi F (2002) Polymer 43:5819–5825

    Article  Google Scholar 

  42. Cai Q, Zhao YL, Wang SG, Bei JZ (2003) Biomacromolecules 4:828–834

    Article  Google Scholar 

  43. Béar MM, Randriamahefa S, Langlois V, Guérin Ph (2000) Polymer 41:3705–3712

    Article  Google Scholar 

  44. Moine L, Cammas S, Amiel C, Guerin P, Sebille B (1997) Polymer 38:3121–3127

    Article  Google Scholar 

  45. Osanai S, Nakamura K (2000) Biomaterials 21:867–876

    Article  Google Scholar 

  46. Kimura Y, Shirotani K, Yamane H, Kitao T (1993) Polymer 34:1741–1748

    Article  Google Scholar 

  47. He B, Bei JZ, Wang SG (2003) Polymer 44:989–994

    Article  Google Scholar 

  48. Reis RL, Cunba AM (1995) J Mater Sci Mater Med 6:786–792

    Article  Google Scholar 

  49. Gomes ME, Riberio AS, Malafaya PB, Reis RL, Cunba AM (2001) Biomaterials 22:883–889

    Article  Google Scholar 

  50. Gomes ME, Reis RL, Cunba AM, van Blitterswijk CA, de Bruijn JD (2001) Biomaterials 22:1911–1917

    Article  Google Scholar 

  51. Mendes SC, Reis RL, Bonvell YP, Cunba AM, van Blitterswijk CA, de Bruijn JD (2001) Biomaterials 22:2057–2064

    Article  Google Scholar 

  52. Cai Q, Wan YQ, Wang SG, Bei JZ (2003) Biomaterials 24:3555–3562

    Article  Google Scholar 

  53. Cai Q, Yang J, Wang SG, Bei JZ (2002) Biomaterials 23:4483–4492

    Article  Google Scholar 

  54. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Tech Today 1:246–253

    Article  Google Scholar 

  55. Qu X, Wirsen A, Albertsson AC (1999) J Appl Polym Sci 74:3193–3202

    Google Scholar 

  56. Liu Y, Tian F, Hu KA (2004) Carbohydr Res 339:845–851

    Article  Google Scholar 

  57. Tamada Y, Ikada Y (1994) J Biomed Mater Res 28:783–789

    Google Scholar 

  58. van Wachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1987) Biomaterials 8:323–328

    Article  Google Scholar 

  59. Horbett T, Schway M, Ratner B (1985) J Colloid Interf Sci 104:28–39

    Google Scholar 

  60. Dimilla PA, Stone JA, Wuinn JA (1993) J Cell Biol 122:729–734

    Article  Google Scholar 

  61. Massia SP, Hubbell JA (1991) J Biomed Mater Res 25:223–242

    Google Scholar 

  62. Lin H, Sun W, Mosher DF, Garcia-Echeverria C, Schaufelberger K, Lelkes PI, Cooper SL (1994) J Biomed Mater Res 28:329–342

    Google Scholar 

  63. Drumheller PD, Ebert DL, Hubbell JA (1994) Biotech Bioeng 43:772–780

    Google Scholar 

  64. Otsuka H, Nagasaki Y, Kataoka K (2000) Biomacromolecules 1:39–48

    Article  Google Scholar 

  65. Yang J, Wan YQ, Wang SG, Tu CF, Cai Q, Bei JZ (2003) Polym Int 52:1892–1899

    Article  Google Scholar 

  66. Barrera DA, Zylstra E, Lansbury PT, Langer R (1993) J Am Chem Soc 115:11010–11011

    Google Scholar 

  67. Feast WJ, Munro S, Richards RW (eds) (1993) Polymer surfaces and interfaces II. Wiley, New York

    Google Scholar 

  68. Loh IH (1993) J Polym 34:661–662 (preprint)

    Google Scholar 

  69. Wade WL, Mammone RJ, Binder M (1991) J Appl Polym Sci 43:1589–1591

    Article  Google Scholar 

  70. Occhiello E, Morra M, Morini G, Garbassi F, Humphrey P (1991) J Appl Polym Sci 42:551–559

    Google Scholar 

  71. Favia P, d’Agostino R (1998) Surf Coat Tech 98:1102–1106

    Google Scholar 

  72. Kang ET, Tan KL, Kato K, Uyama Y, Ikada Y (1996) Macromolecules 29:6872–6879

    Google Scholar 

  73. Qiu YX, Klee D, Plüster W, Severich B, Hőcker H (1996) J Appl Polym Sci 61:2373–2382

    Google Scholar 

  74. Hsu SH, Chen WC (2000) Biomaterials 21:359–367

    Google Scholar 

  75. Yang J, Shi GX, Wang SG, Bei JZ, Cao YL, Shang QX, Yang GH, Wang WJ (2002) J Biomed Mater Res 62:438–446

    Google Scholar 

  76. Yang J, Bei JZ, Wang SG (2002) Biomaterials 23:2607–2614

    Google Scholar 

  77. Yang J, Wan YQ, Wang SG, Yang JL, Bei JZ (2003) J Biomed Mater Res 67A:1139–1147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenguo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Cui, W. & Bei, J. Bulk and surface modifications of polylactide. Anal Bioanal Chem 381, 547–556 (2005). https://doi.org/10.1007/s00216-004-2771-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2771-2

Keywords

Navigation