Skip to main content
Log in

Enhancement of optical, electrical and sensing characteristics of ZnO nanowires for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the synthesis of undoped and Sn-doped ZnO nanowires using vapor transport technique is reported. The effects of Sn content on morphological, structural, optical, electrical and sensing characteristics of ZnO nanowire films were examined by utilizing various techniques. X-ray diffraction inferred that all undoped and Sn-doped ZnO films are indexed to single hexagonal phase and no additional phases for tin or tin oxides were presented. The estimated Sn at.% rations was proportionate with the Sn ratios utilized in the source ingots. The morphology of the undoped ZnO sample was nanowires with quite long and smooth surfaces. After Sn doping, the smoothness of the nanowires is reduced and agglomerations of particles are observed. A reduction in transmittance and an increase in reflectance were observed after Sn doping. The optical band gap reduced from 3.27 to 3.06 eV with the elevation of Sn doping percent from 0 to 7 at.%. Two characteristic emission peaks were seen in the spectra around 388 nm and 540 nm. The emission peaks were affected by the Sn doping ratio. All the nanowires films demonstrated the semiconductor type manner with two distinct activation energies. The Sn doping enhanced the sensitivity of the sensors toward NO2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data of this study are available, and they can be requested from the corresponding author.

References

  1. A. Thomas, B.G. Jeyaprakash, Synth. Met. 290, 117140 (2022)

    Article  CAS  Google Scholar 

  2. S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salem, L. Pichon, F.M. El-Hossary, J. Phys. Chem. Solids 67, 2351–2357 (2006)

    Article  CAS  Google Scholar 

  3. N. Patra, M. Manikandan, V. Singh, I.A. Palani, J. Lumin. 238, 118331 (2021)

    Article  CAS  Google Scholar 

  4. F.M. El-Hossary, S.H. Mohamed, E.A. Noureldein, M. Abo EL-Kassem, Mater. Sci. Semicond. Proc. 120, 105284 (2020)

    Article  CAS  Google Scholar 

  5. Y. Cao, H.Q. Alijani, M. Khatami, F. Bagheri-Baravati, S. Iravani, F. Sharifi, J. Mater. Res. Technol. 15, 5445–5451 (2021)

    Article  CAS  Google Scholar 

  6. F.M. El-Hossary, S.H. Mohamed, E.A. Noureldein, M. Abo EL-Kassem, Bull. Mater. Sci. 44, 82 (2021)

    Article  CAS  Google Scholar 

  7. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, Prog. Quantum Electron. 34, 191–259 (2010)

    Article  Google Scholar 

  8. B. Yan, J. Zheng, F. Wang, L. Zhao, Q. Zhang, W. Xu, S. He, Mater. Des. 201, 109518 (2021)

    Article  CAS  Google Scholar 

  9. J. Cui, Mater. Charact. 64, 43–52 (2012)

    Article  CAS  Google Scholar 

  10. M.H. Aleinawi, A.U. Ammar, M. Buldu-Akturk, N.S. Turhan, S. Nadupalli, E. Erdem, J. Phys. Chem. C 126, 4229–4240 (2022)

    Article  CAS  Google Scholar 

  11. N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong, S. Choopun, Ceram. Int. 34, 823–826 (2008)

    Article  CAS  Google Scholar 

  12. A. Šutka, T. Käämbre, R. Pärna, I. Juhnevica, M. Maiorov, U. Joost, V. Kisand, Solid State Sci. 56, 54–62 (2016)

    Article  Google Scholar 

  13. A. Yavaş, S. Güler, G. Onak, M. Erol, M.T. Kayalar, O. Karaman, I.D. Tunç, S. Oğuzlar, J. Alloys Compd. 891, 162010 (2021)

    Article  Google Scholar 

  14. S.H. Al-Heniti, R.I. Badran, A. Umar, H.M. Zaki, Sci. Adv. Mater. 6, 1993–2000 (2014)

    Article  CAS  Google Scholar 

  15. S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, J. Phys. D: Appl. Phys. 37, 2274–2282 (2004)

    Article  CAS  Google Scholar 

  16. S. Suhaimi, S. Sakrani, N.M. Yatim, M.A. Hashim, AIP Conf. Proc. 1972, 030005 (2018)

  17. S.H. Mohamed, M.T. Khan, A. Almohammedi, M.A. Awad, Mater. Sci. Semicond. Process. 123, 105573 (2021)

    Article  CAS  Google Scholar 

  18. N. Siva, D. Sakthi, S. Ragupathy, V. Arun, N. Kannadasan, Mater. Sci. Eng. B 253, 114497 (2020)

    Article  CAS  Google Scholar 

  19. A. Mathur, P. Halappa, C. Shivakumara, J. Mater. Sci.: Mater. Electron. 29, 19951–19964 (2018)

    CAS  Google Scholar 

  20. K. Li, H. Lian, M. Shang, J. Lin, Dalton Trans. 44, 20542 (2015)

    Article  CAS  Google Scholar 

  21. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, MA, 1979), p.102

    Google Scholar 

  22. H. Abdullah, M.N. Norazia, S. Shaari, M.Z. Nuawi, N.S. Mohame Dan, Am. J. Eng. Appl. Sci. 3, 171–179 (2010)

    Article  Google Scholar 

  23. X. Li, Z. Gu, J.H. Cho, H. Sun, P. Kurup, Sens. Actuators B: Chem. 158, 199–207 (2011)

    Article  CAS  Google Scholar 

  24. N.M.A. Hadia, M. Aljudai, M. Alzaid, S.H. Mohamed, W.S. Mohamed, Appl. Phys. A 128, 17 (2022)

    Article  CAS  Google Scholar 

  25. M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Appl. Phys. A 124, 617 (2018)

    Article  Google Scholar 

  26. S.H. Mohamed, J. Korean Phys. Soc. 62, 902–905 (2013)

    Article  CAS  Google Scholar 

  27. B.L. Muhammad, F. Cummings, Mater. Today: Proc. 36, 383–389 (2021)

    Google Scholar 

  28. C. Wu, L. Shen, H. Yu, Q. Huang, Y.C. Zhang, Mater. Res. Bull. 46, 1107–1112 (2011)

    Article  CAS  Google Scholar 

  29. W.E. Mahmoud, T. Al-Harbi, J. Cryst. Growth 327, 52–56 (2011)

    Article  CAS  Google Scholar 

  30. A.D. Acharya, S. Moghe, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, D.M. Phase, V. Ganesan, J. Mol. Struct. 1022, 8–15 (2012)

    Article  CAS  Google Scholar 

  31. A.N. Pikhtin, A.D. Yas’Kov, Sov, Phys. Semicond. 15, 81 (1981)

    Google Scholar 

  32. S.H. Mohamed, Philos. Mag. 91, 3598–3612 (2011)

    Article  CAS  Google Scholar 

  33. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J. Phys. Chem. C 112, 9579–9585 (2008)

    Article  CAS  Google Scholar 

  34. S.K. Mishra, S. Bayan, R. Shankar, P. Chakraborty, R.K. Srivastava, Sens. Actuat. A 211, 8–14 (2014)

    Article  CAS  Google Scholar 

  35. A. Sreedhar, J.H. Kwon, J. Yi, J.S. Kim, J.S. Gwag, Mater. Sci. Semicond. Proc. 49, 8–14 (2016)

    Article  CAS  Google Scholar 

  36. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, J. Appl. Phys. 94, 354 (2003)

    Article  CAS  Google Scholar 

  37. S.K. Sinha, Ceram. Int. 41, 13676–13684 (2015)

    Article  CAS  Google Scholar 

  38. R. Deng, X.T. Zhang, E. Zhang, Y. Liang, Z. Liu, H.Y. Xu, S.K. Hark, J. Phys. Chem. C 111, 13013–13015 (2007)

    Article  CAS  Google Scholar 

  39. S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 7204–7210 (2010)

    Article  CAS  Google Scholar 

  40. M. Yao, F. Ding, Y. Cao, P. Hu, J. Fan, C. Lu, F. Yuan, C. Shi, Y. Chen, Sens. Actuator. B 201, 255–265 (2014)

    Article  CAS  Google Scholar 

  41. S.H. Mohamed, J. Alloys Compd. 510, 119–124 (2012)

    Article  CAS  Google Scholar 

  42. W.S. Mohamed, A. Nucara, G. Calestani, F. Mezzadri, E. Gilioli, F. Capitani, P. Postorino, P. Calvani, Phys. Rev. B 92, 054306 (2015)

    Article  Google Scholar 

  43. W.S. Mohamed, N.M.A. Hadia, B. Al bakheet, M. Alzaid, A.M. Abu-Dief, Solid State Sci. 125, 106841 (2022)

    Article  CAS  Google Scholar 

  44. M. Alzaid, W.S. Mohamed, M. El-Hagary, E.R. Shaaban, N.M.A. Hadia, Opt. Mater. 118, 111228 (2021)

    Article  CAS  Google Scholar 

  45. N.M.A. Hadia, W.S. Mohamed, M.S. Abd El-sadek, Mater. Chem. Phys. 235, 121750 (2019)

    Article  CAS  Google Scholar 

  46. H.A. Khorami, M. Keyanpour-Rad, M.R. Vaezi, Appl. Surf. Sci. 257, 7988–7992 (2011)

    Article  CAS  Google Scholar 

  47. P. Zhang, G. Pan, B. Zhang, J. Zhen, Y. Sun, Mater. Res. 17, 817–822 (2014)

    Article  Google Scholar 

  48. N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv Asia 7, 63–65 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no. (DSR2022-GR-0122).

Funding

This study was funded by the Deanship of Scientific Research at Jouf University, DSR2022-GR-0122,N.M.A. Hadia

Author information

Authors and Affiliations

Authors

Contributions

NMAH was involved in supervision, writing—original draft and writing—review and editing. MA contributed to conceptualization, methodology and investigation. BA assisted in the conceptualization, methodology and investigation. MA-S contributed to the conceptualization, methodology and investigation. WSM contributed to the methodology, investigation, formal analysis and editing. ME contributed to the methodology, investigation and formal analysis. MS performed the conceptualization, methodology, investigation and formal analysis. AMA contributed to the methodology and writing—review and editing. MR was involved in the methodology, writing—review and editing. SHM performed writing—review and editing. MAA contributed to the methodology, investigation and formal analysis.

Corresponding author

Correspondence to N. M. A. Hadia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadia, N.M.A., Alzaid, M., Alqahtani, B. et al. Enhancement of optical, electrical and sensing characteristics of ZnO nanowires for optoelectronic applications. J Mater Sci: Mater Electron 34, 456 (2023). https://doi.org/10.1007/s10854-023-09905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09905-7

Navigation