Skip to main content
Log in

ZnO thin films prepared by RF plasma chemical vapour transport for self-cleaning and transparent conducting coatings

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO thin films were prepared by chemical vapour transport method in inductively coupled plasma (ICP). The films were synthesized at different substrate positions and various oxygen/argon ratios. X-ray diffraction (XRD) revealed that all the synthesized films at different positions are mixture of hexagonal ZnO and hexagonal Zn phases. The relative peak integrated intensity (RPII) of the ZnO phase is 83.6, 25.3 and 45.3%, for positions 1, 2 and 3, respectively. Morphology of ZnO films was found to be sensitive to substrate position. Flat flakes, bended nanowires (NWs) and nanoparticles morphologies are observed for positions 1, 2 and 3, respectively. The sample synthesized at 1 is stoichiometric, whereas the samples prepared in positions 2 and 3 are sub-stoichiometric. The films prepared at positions 1 and 3 have relatively high transmittance and low reflectance values, whereas the film prepared at position 2 has low transmittance and high reflectance. The ZnO film prepared at position 2 is hydrophobic with water contact angle of 112.2°, which can be used as self-cleaning coating. For ZnO films prepared with various O2 ratios, the RPII was 83.2, 88.0, 96.4 and 100% for films prepared with 10, 20, 30 and 40%, respectively. With increasing O2 ratio, the nanograins became bigger and the stoichiometry improved. The transmittance and optical bandgap increased, whereas the reflectance and refractive index decreased with increase in O2 ratio. The ZnO film synthesized with 30% O2 ratio has the highest figure of merit (FOM) value; thus, this film may be considered as the best ZnO film for transparent conducting coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Lee H-Y, Cheng C-Y and Lee C-T 2020 Mater. Sci. Semicond. Proc. 119 105223

    Article  CAS  Google Scholar 

  2. Xu Q, Hong R, Cheng Q, Chen X, Zhang F, Feng J et al 2018 Physica E 104 16

    Article  CAS  Google Scholar 

  3. Çiçek O, Kurnaz S, Bekar A and Öztürk Ö 2019 Compos. B: Eng. 174 106987

    Article  CAS  Google Scholar 

  4. Echendu O K, Werta S Z, Dejene F B and Craciun V 2018 J. Alloys Compd. 769 201

    Article  CAS  Google Scholar 

  5. Bose S, Mandal S, Barua A K and Mukhopadhyay S 2020 J. Mater. Sci. Technol. 55 136

    Article  Google Scholar 

  6. Wu J and Xue D 2011 Sci. Adv. Mater. 3 127

    Article  CAS  Google Scholar 

  7. Meng L, Chai H, Yang X, Lv Z and Yang T 2019 Sol. Energy Mater. Sol. C 191 459

    Article  CAS  Google Scholar 

  8. Jang J S, Kim J, Ghorpade U, Shin H H, Gang M G, Park S D et al 2019 J. Alloys Compd. 793 499

    Article  CAS  Google Scholar 

  9. Ahn B D, Kim J H, Kang H S, Lee C H, Oh S H, Kim K W et al 2008 Thin Solid Films 516 1382

    Article  CAS  Google Scholar 

  10. El Mir L, Ayadi Z B, Saadoun M, Djessas K, von Bardeleben H J and Alaya S 2007 Appl. Surf. Sci. 254 570

    Article  CAS  Google Scholar 

  11. Kim I Y, Shin S W, Gang M G, Lee S H, Gurav K V, Patil P S et al 2014 Thin Solid Films 570 321

    Article  CAS  Google Scholar 

  12. Minami T, Ida S, Miyata T and Minamino Y 2003 Thin Solid Films 445 268

    Article  CAS  Google Scholar 

  13. Upadhaya D and Purkayastha D D 2020 Mater. Today-Proc. In press: https://doi.org/10.1016/j.matpr.2020.05.815

  14. Li L, Li B, Dong J and Zhang J 2016 J. Mater. Chem. A 4 13677

    Article  CAS  Google Scholar 

  15. Li X, Reinhoudt D and Crego-Calama M 2007 Chem. Soc. Rev. 36 1350

    Article  Google Scholar 

  16. Zhang X, Shi F, Niu J, Jiang Y and Wang Z 2008 J. Mater. Chem. 18 621

    Article  CAS  Google Scholar 

  17. Yao L and He J 2014 Prog. Mater. Sci. 61 94

    Article  Google Scholar 

  18. Askar K, Phillips B M, Fanga Y, Choia B, Gozubenli N, Jiang P et al 2013 Colloids Surf. A: Physicochem. Eng. Aspects 439 84

    Article  CAS  Google Scholar 

  19. Ragesh P, Ganesh V A, Naira S V and Nair A S 2014 J. Mater. Chem. A 2 14773

    Article  CAS  Google Scholar 

  20. Lee S, Kim W and Yong K 2011 Adv. Mater. 23 4398

    Article  CAS  Google Scholar 

  21. Scardino A J, Zhang H, Cookson D J and Lamb R N 2009 Biofouling: J. Bioadhes. Biofilm Res. 25 757

    Article  CAS  Google Scholar 

  22. Barshilia H C, John S and Mahajan V 2012 Sol. Energy Mater. Sol. C 107 219

    Article  CAS  Google Scholar 

  23. Kim Y J and Kirn H J 1999 Mater. Lett. 41 159

    Article  CAS  Google Scholar 

  24. El-Hossary F M, Mohamed S H, Noureldein E A and Abo EL-Kassem M 2020 Mater. Sci. Semicond. Proc. 120 105284

    Article  CAS  Google Scholar 

  25. Bedia A, Bedia F Z, Aillerie M, Maloufi N and Benyoucef B 2015 Eng. Procedia 74 529

    Article  CAS  Google Scholar 

  26. Jain N, Kumawat R and Sharma S K 2020 Mater. Today-Proc. 30 93

  27. Marwoto P, Sugianto S, Aryanto D, Wibowo E and Wahyuningsih K 2014 Adv. Mater. Res. 896 237

    Article  CAS  Google Scholar 

  28. Radjehi L, Djelloul A, Lamri S, Slim M F and Rahim M 2019 Surf. Eng. 35 520

    Article  CAS  Google Scholar 

  29. Mohamed S H 2011 Phil. Mag. 91 3598

    Article  CAS  Google Scholar 

  30. Tauc J C 1974 Amorphous and liquid semiconductors (New York: Plenum Press) Vol 159

  31. Gonçalves R S, Barrozo P, Brito G L, Viana B C and Cunha F 2018 Thin Solid Films 661 40

    Article  CAS  Google Scholar 

  32. Mohamed S H, Abd El-Rahman A M, Salem A M, Pichon L and El-Hossary F M 2006 J. Phys. Chem. Solids 67 2351

    Article  CAS  Google Scholar 

  33. Mohamed S H, Ali H M, Mohamed H A and Salem A M 2005 Eur. Phys. J. Appl. Phys. 31 95

    Article  CAS  Google Scholar 

  34. Wang Y, Chen J, Wang Y and Xiong W 2018 Vacuum 149 291

    Article  CAS  Google Scholar 

  35. Sahu B B, Han J G, Kim J B, Kumar M, Jin S and Hori M 2016 Plasma Process. Polym. 13 134

    Article  CAS  Google Scholar 

  36. Fujimura N, Nishihara T, Goto S, Xu J and Ito T 1993 J. Cryst. Growth 130 269

    Article  CAS  Google Scholar 

  37. Hammad A H, Abdel-Wahab M S, Vattamkandathil S and Ansari A R 2018 Physica B 540 1

    Article  CAS  Google Scholar 

  38. Abdel-Fattah E, Elsayed I A and Fahmy T 2018 J. Mater. Sci.: Mater. Electron. 29 19942

    CAS  Google Scholar 

  39. Mehan N, Gupta V, Sreenivas K and Mansingh A 2004 J. Appl. Phys. 96 3134

    Article  CAS  Google Scholar 

  40. Ismail A and Abdullah M J 2013 J. King Saud Univ. Sci. 25 209

    Article  Google Scholar 

  41. Mohamed S H, Kappertz O, Ngaruiya J M, Pedersen T P L, Drese R and Wuttig M 2003 Thin Solid Films 429 135

    Article  CAS  Google Scholar 

  42. Mohamed S H and Drese R 2006 Thin Solid Films 513 64

    Article  CAS  Google Scholar 

  43. Mohamed S H, Kappertz O, Pedersen T P L, Drese R and Wuttig M 2003 Phys. Status Solidi (a) 198 224

    Article  CAS  Google Scholar 

  44. Jung Y S 2004 Solid State Commun. 129 491

    Article  CAS  Google Scholar 

  45. Look D C, Hemsky J W and Sizelove J R 1999 Phys. Rev. Lett. 82 2552

    Article  CAS  Google Scholar 

  46. Wang Y, Peng Z J, Wang Q and Fu X L 2017 Surf. Eng. 33 217

    Article  CAS  Google Scholar 

  47. Tansley T L and Neely D F 1984 Thin Solid Films 121 95

    Article  CAS  Google Scholar 

  48. Golovynskyi S, Ievtushenko A, Mamykin S, Dusheiko M, Golovynska I, Bykov O et al 2018 Vacuum 153 204

    Article  CAS  Google Scholar 

  49. Robbins J J, Harvey J, Leaf J, Fry C and Wolden C A 2005 Thin Solid Films 473 35

    Article  CAS  Google Scholar 

  50. Haacke G 1976 J. Appl. Phys. 47 4086

    Article  CAS  Google Scholar 

  51. Zhu C, Zhou J, Li J, Yang Y, Xu W, Zhong L et al 2018 Ceram. Int. 44 369

    Article  CAS  Google Scholar 

  52. Jayaraman V K, Maldonado-Alvarez A, Jimenez-Gonzalez A E and Olvera-Amador M D 2016 Mater. Lett. 181 52

    Article  CAS  Google Scholar 

  53. Ma A, Rousseau F, Donsanti F, Lincot D and Morvan D 2015 Surf. Coat. Technol. 276 186

    Article  CAS  Google Scholar 

  54. Abd El-Rahman A M and Mohamed S H 2020 Thin Solid Films 698 137864

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hossary, F.M., Mohamed, S.H., Noureldein, E.A. et al. ZnO thin films prepared by RF plasma chemical vapour transport for self-cleaning and transparent conducting coatings. Bull Mater Sci 44, 82 (2021). https://doi.org/10.1007/s12034-021-02378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02378-6

Keywords

Navigation