Skip to main content
Log in

Optical constants, photoluminescence and thermogravimetry of ZnS–ZnO hybrid nanowires synthesized via vapor transport

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 28 March 2022

This article has been updated

Abstract

In this study, ZnS–ZnO hybrid nanowires (NWs) were synthesized using vapor transport synthesis method. The structure, morphology, optical properties, photoluminescence and thermogravimetric analysis of the samples were studied. Scanning electron microscopy images and X-ray diffraction pattern revealed that the ZnS–ZnO hybrid nanostructures are nanowires with mixed two hexagonal phases of ZnS and ZnO structures. The evaluated optical band gap was 3.62 eV which is close to the bulk ZnS value, whereas the refractive index value 1.85 (at 620 nm) is lower than the bulk ZnS value. The thermogravimetric analysis inferred that the ZnS–ZnO hybrid NWs could be stable up to ~ 652 °C and it may be used as a gas sensor up to this temperature. Under optical excitation, ZnS–ZnO hybrid NWs exhibited one ultraviolet and two blue emissions peaks. The ZnS–ZnO hybrid NWs is visualized to be promising for light-emitting diodes application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. M. Samykano, Mater. Charact. 179, 111373 (2021)

    Article  Google Scholar 

  2. I. Enculescu, M. Sima, V. Ghiordanescu, M. Secu, Chalcogenide Lett. 2, 9 (2005)

    Google Scholar 

  3. Z. Chen, W. Wei, B.-J. Ni, Curr. Opin. Electrochem. 31, 100888 (2022)

    Article  Google Scholar 

  4. S.H. Mohamed, M. El-Hagary, Mater. Chem. Phys. 143, 178 (2013)

    Article  Google Scholar 

  5. S. UrRehman, M. Hafeez, W. Uddin, S.A. Khan, Q. Lu, L. Wei, M. Saeed, M. Sohail, A.S. Saleemi, S. Kumar, L. Zhu, Appl. Surf. Sci. 486, 539 (2019)

    Article  ADS  Google Scholar 

  6. S. Park, S. An, H. Ko, S. Lee, C. Lee, Sens. Actuators B Chem. 188, 1270 (2013)

    Article  Google Scholar 

  7. N. Üzar, S. Okur, M.C. Arıkan, Sens. Actuators A 167, 188 (2011)

    Article  Google Scholar 

  8. X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, Solid State Mater. Sci. 38, 57 (2013)

    Google Scholar 

  9. J. Dai, X. Song, H. Zheng, C. Wu, Mater. Chem. Phys. 174, 204 (2016)

    Article  Google Scholar 

  10. D. Kim, P. Shimpi, P.-X. Gao, Nano Res. 2, 966 (2009)

    Article  Google Scholar 

  11. S. Saha, S. Sarkar, S. Pal, P. Sarkar, J. Phys. Chem. C 117, 15890 (2013)

    Article  Google Scholar 

  12. D.Q. Trung, N. Tu, N.D. Hung, P.T. Huy, J. Lumin. 169, 165–172 (2016)

    Article  Google Scholar 

  13. D. Mohanta, G.A. Ahmed, A. Choudhury, F. Singh, D.K. Avasthi, J. Nanopart. Res. 8, 645–652 (2006)

    Article  ADS  Google Scholar 

  14. M.-H. Lin, C.-H. Ho, ACS Omega 2, 4514–4523 (2017)

    Article  Google Scholar 

  15. T. Sonawane, M. Bodke, U. Gawai, J. Mater. Sci.: Mater. Electron. 28, 10958–10964 (2017)

    Google Scholar 

  16. J.B. Li, L.W. Wang, Phys. Rev. B 72, 125325 (2005)

    Article  ADS  Google Scholar 

  17. X.C. Jiang, Y. Xie, J. Lu, L.Y. Zhu, W. He, Y.T. Qian, Chem. Mater. 13, 1213 (2001)

    Article  Google Scholar 

  18. S.K. Chan, S.K. Lok, G. Wang, Y. Cai, N. Wang, K.S. Wong, I.K. Sou, J. Electron. Mater. 37, 1433–1437 (2008)

    Article  ADS  Google Scholar 

  19. M. Chang, X.L. Cao, X.J. Xu, L.D. Zhang, Phys. Lett. A 372, 273 (2008)

    Article  ADS  Google Scholar 

  20. Q. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing, L.C.L.Y. Voon, B. Lassen, P.C. Eklund, Nano Lett. 4, 1663–1668 (2004)

    Article  ADS  Google Scholar 

  21. M.V. Limaye, S. Gokhale, S.A. Acharya, S.K. Kulkarni, Nanotechnology 19, 415602 (2008)

    Article  Google Scholar 

  22. M.T. Tran, N.V. Du, N. Tu, N.T. Huyen, N.D. Hung, D.X. Viet, N.N. Ha, D.Q. Trung, P.T. Huy, Opt. Mater. 124, 111963 (2022)

    Article  Google Scholar 

  23. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  24. Y. Li, M. Feneberg, A. Reiser, M. Schirra, R. Enchelmaier, A. Ladenburger, A. Langlois, R. Sauer, K. Thonke, J. Cai, H. Rauscher, J. Appl. Phys. 99, 054307 (2006)

    Article  ADS  Google Scholar 

  25. S.H. Mohamed, M. El-Hagary, S. Althoyaib, J. Alloys Compod. 537, 291–296 (2012)

    Article  Google Scholar 

  26. Y.-K. Tseng, H.-C. Hsu, W.-F. Hsieh, K.-S. Liu, I.-C. Chen, J. Mater. Res. 18, 2837 (2003)

    Article  ADS  Google Scholar 

  27. M.S. Alqahtani, S.H. Mohamed, Z.A. Alrowaili, N.M.A. Hadia, Can. J. Phys. 98, 689 (2020)

    Article  ADS  Google Scholar 

  28. Y.-S. Sue, K.-Y. Pan, D.-H. Wei, Appl. Surf. Sci. 471, 435–444 (2019)

    Article  ADS  Google Scholar 

  29. M.Y. Lu, P.Y. Su, Y.L. Chueh, L.J. Chen, L.J. Chou, Appl. Surf. Sci. 244, 96 (2005)

    Article  ADS  Google Scholar 

  30. T. Minemoto, A. Okamoto, H. Takakura, Thin Solid Films 519, 7568 (2011)

    Article  ADS  Google Scholar 

  31. B.W. Jacobs, V.M. Ayres, M.A. Crimp, K. McElroy, Nanotechnology 19, 405706 (2008)

    Article  Google Scholar 

  32. M.A. Awad, E.M.M. Ibrahim, A.M. Ahmed, J. Therm. Anal. Calorim. 117, 635 (2014)

    Article  Google Scholar 

  33. J.S. McCloy, R.W. Tustion, Chem. Vap. Depos. Zinc Sulfide ch.2, 33 (2013)

    Google Scholar 

  34. S.H. Mohamed, Philos. Mag. 91, 3598–3612 (2011)

    Article  ADS  Google Scholar 

  35. S. Bano, S.I. Raj, A. Khalilullah, A. Jaiswal, I. Uddin, J. Photochem. Photobiol. A Chem. 405, 112925 (2021)

    Article  Google Scholar 

  36. S.H. Mohamed, J. Phys. D Appl. Phys. 43, 035406 (2010)

    Article  ADS  Google Scholar 

  37. U.P. Gawai, H.A. Khawal, T. Shripathi, B.N. Dole, Cryst. Eng. Comm. 18, 1439–1445 (2016)

    Article  Google Scholar 

  38. H. Chen, D. Shi, J. Qi, J. Jia, B. Wang, Phys. Lett. A 373, 371–375 (2009)

    Article  ADS  Google Scholar 

  39. J.C. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)

    Book  Google Scholar 

  40. R. Zein, I. Alghoraibi, J. Nanomater. 2019, 7541863 (2019)

    Article  Google Scholar 

  41. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985)

    Google Scholar 

  42. S.H. Mohamed, M. El-Hagary, S. Althoyaib, Appl. Phys. A 111, 1207–1212 (2013)

    Article  ADS  Google Scholar 

  43. S.H. Mohamed, M. El-Hagary, M. Emam-Ismail, J. Phys. D Appl. Phys. 43, 075401 (2010)

    Article  ADS  Google Scholar 

  44. S. Kar, S. Chaudhuri, J. Phys. Chem. B 109, 3298 (2005)

    Article  Google Scholar 

  45. M.-W. Huang, Y.-W. Cheng, K.-Y. Pan, C.-C. Chang, F.S. Shieu, H.C. Shih, Appl. Surf. Sci. 261, 665–670 (2012)

    Article  ADS  Google Scholar 

  46. S. Park, C. Jin, H. Kim, C. Hong, C. Lee, J. Lumin. 132, 231–235 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program 1.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by S.H. Mohamed, M. A. Awad and Mohamed Shaban. The first draft of the manuscript was written by S.H. Mohamed and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. H. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that there are no known financial interests or competing personal relationships that influence the work presented in this paper.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S.H., Awad, M.A. & Shaban, M. Optical constants, photoluminescence and thermogravimetry of ZnS–ZnO hybrid nanowires synthesized via vapor transport. Appl. Phys. A 128, 274 (2022). https://doi.org/10.1007/s00339-022-05449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05449-5

Keywords

Navigation