Skip to main content
Log in

Optical and gas sensing properties of SnO2 nanowires grown by vapor–liquid–solid mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2 nanowires were synthesized via vapor transport method by modulating the thickness of the Gold (Au) catalyst. The effect of morphology and photoluminescence properties of nanowires on gas sensing was investigated. The structural and morphological studies reveal that the synthesized nanowires are crystalline in nature with high density. The nanowires were evenly spread on the surface of the substrate. These nanowires were tested for gas sensing properties based on change in resistance under exposure to air and gases (CO, CH4, Methanol). The results showed an improved response as compared to the previous studied. These sensors have potential applications in advanced sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  2. B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38(1), 16–24 (2009)

    Article  Google Scholar 

  3. C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007)

    Article  Google Scholar 

  4. G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139(1), 1–23 (2007)

    Article  Google Scholar 

  5. V. Malyshev, A. Pislyakov, Investigation of gas-sensitivity of sensor structures to carbon monoxide in a wide range of temperature, concentration and humidity of gas medium. Sens. Actuators B 123(1), 71–81 (2007)

    Article  Google Scholar 

  6. Q.-H. Wu, J. Li, S.-G. Sun, Nano SnO2 gas sensors. Curr. Nanosci. 6(5), 525–538 (2010)

    Article  Google Scholar 

  7. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1), 36–50 (2006)

    Article  Google Scholar 

  8. C. Xu et al., Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B 3(2), 147–155 (1991)

    Article  Google Scholar 

  9. K. Soulantica et al., Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing. Adv. Funct. Mater. 13(7), 553–557 (2003)

    Article  Google Scholar 

  10. Y.-J. Choi et al., Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9), 095508 (2008)

    Article  Google Scholar 

  11. I.-D. Kim et al., Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett. 6(9), 2009–2013 (2006)

    Article  Google Scholar 

  12. M. Tonezzer, N. Hieu, Size-dependent response of single-nanowire gas sensors. Sens. Actuators B 163(1), 146–152 (2012)

    Article  Google Scholar 

  13. A. Vomiero et al., Controlled growth and sensing properties of In2O3 nanowires. Cryst. Growth Des. 7(12), 2500–2504 (2007)

    Article  Google Scholar 

  14. W.-Y. Li, L.-N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15(5), 851–857 (2005)

    Article  Google Scholar 

  15. R. Afrin et al., Design and analysis of functional multiwalled carbon nanotubes for infrared sensors. Sens. Actuators A 203, 142–148 (2013)

    Article  Google Scholar 

  16. J. Zhang et al., Microwave-assisted and large-scale synthesis of SnO2/carbon-nanotube hybrids with high lithium storage capacity. RSC Adv. 5(72), 58568–58573 (2015)

    Article  Google Scholar 

  17. E. Comini et al., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869–1871 (2002)

    Article  Google Scholar 

  18. S. Zia et al., Ultra-long multicolor belts and unique morphologies of tin-doped zinc oxide nanostructures. Appl. Phys. A 115(1), 275–281 (2014)

    Article  Google Scholar 

  19. F.K. Butt et al., Metal-catalyzed synthesis of ultralong tin dioxide nanobelts: electrical and optical properties with oxygen vacancy-related orange emission. Mater. Sci. Semicond. Process. 26, 388–394 (2014)

    Article  Google Scholar 

  20. M. Amin et al., Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts. CrystEngComm 16(27), 6080–6088 (2014)

    Article  Google Scholar 

  21. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991)

    Article  Google Scholar 

  22. Y.-F. Sun et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012)

    Article  Google Scholar 

  23. S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B 145(1), 7–12 (2010)

    Article  Google Scholar 

  24. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7(1), 63–75 (2003)

    Article  Google Scholar 

  25. F. Hernandez-Ramirez et al., High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens. Actuators B 121(1), 3–17 (2007)

    Article  Google Scholar 

  26. D.-F. Zhang et al., Size-controllable one-dimensinal SnO2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Phys. Chem. Chem. Phys. 8(42), 4874–4880 (2006)

    Article  Google Scholar 

  27. Q. Lipeng et al., The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19(18), 185705 (2008)

    Article  Google Scholar 

  28. A. Kolmakov et al., Enhanced Gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5(4), 667–673 (2005)

    Article  Google Scholar 

  29. Y.J. Kwon et al., Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl. Mater. Interfaces 8(21), 13646–13658 (2016)

    Article  Google Scholar 

  30. J. Wu et al., Controllable synthesis and field emission properties of SnO2 zigzag nanobelts. J. Phys. D: Appl. Phys. 41(18), 185302 (2008)

    Article  Google Scholar 

  31. T. Van Dang et al., Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors. ACS Appl. Mater. Interfaces 8(7), 4828–4837 (2016)

    Article  Google Scholar 

  32. J. Zheng et al., Modeling and Simulation of Single Nanobelt SnO2 Gas Sensors with FET Structure. Sens. Actuators B 128, 226–234 (2007)

    Article  Google Scholar 

  33. Z.P. Guo et al., Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries. J. Mater. Chem. 19(20), 3253–3257 (2009)

    Article  Google Scholar 

  34. N. Bhardwaj, S. Kuriakose, S. Mohapatra, Structural and optical properties of SnO2 nanotowers and interconnected nanowires prepared by carbothermal reduction method. J. Alloys Compd. 592, 238–243 (2014)

    Article  Google Scholar 

  35. S. Luo et al., Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17(6), 1695 (2006)

    Article  Google Scholar 

  36. Y. Chen et al., Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 369(1), 16–20 (2003)

    Article  Google Scholar 

  37. Y. Chen, L. Campbell, W. Zhou, Self-catalytic branch growth of SnO2 nanowire junctions. J. Cryst. Growth 270(3), 505–510 (2004)

    Article  Google Scholar 

  38. C. Ling, W. Qian, F. Wei, Gas-flow assisted bulk synthesis of V-type SnO2 nanowires. J. Cryst. Growth 285(1), 49–53 (2005)

    Article  Google Scholar 

  39. D. Calestani et al., Structural and optical study of SnO2 nanobelts and nanowires. Mater. Sci. Eng. C 25(5), 625–630 (2005)

    Article  Google Scholar 

  40. M.O. Orlandi et al., Gro\wth of SnO nanobelts and dendrites by a self-catalytic VLS process. J. Phys.Chem. B 110(13), 6621–6625 (2006)

    Article  Google Scholar 

  41. R. Yang, Z.L. Wang, Springs, rings, and spirals of rutile-structured tin oxide nanobelts. J. Am. Chem. Soc. 128(5), 1466–1467 (2006)

    Article  Google Scholar 

  42. P. Nguyen, H.T. Ng, M. Meyyappan, Catalyst metal selection for synthesis of inorganic nanowires. Adv. Mater. 17(14), 1773–1777 (2005)

    Article  Google Scholar 

  43. J. Wang et al., Growth of SnO2 nanowires with uniform branched structures. Solid State Commun. 130(1), 89–94 (2004)

    Article  Google Scholar 

  44. B. Wang et al., Nanostructures and self-catalyzed growth of SnO2. J. Appl. Phys. 98(7), 073520 (2005)

    Article  Google Scholar 

  45. S. Budak et al., Growth and characterization of single crystalline tin oxide (SnO 2) nanowires. J.Cryst. Growth 291(2), 405–411 (2006)

    Article  Google Scholar 

  46. Z. Zhang et al., Morphology-controlled synthesis and a comparative study of the physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts. Nanotechnology 20(13), 135605 (2009)

    Article  Google Scholar 

  47. F.K. Butt et al., Fabrication of novel SnO 2 nanofibers bundle and their optical properties. Mater. Chem. Phys. 136(1), 10–14 (2012)

    Article  Google Scholar 

  48. F. Yu et al., Fabrication of SnO2 one-dimensional nanosturctures with graded diameters by chemical vapor deposition method. J. Cryst. Growth 312(2), 220–225 (2010)

    Article  Google Scholar 

  49. F.K. Butt et al., Synthesis of highly pure single crystalline SnSe nanostructures by thermal evaporation and condensation route. Mater. Chem. Phys. 137(2), 565–570 (2012)

    Article  Google Scholar 

  50. W.S. Khan et al. Optical properties and characterization of zinc nitride nanoneedles prepared from ball-milled Zn powders. Mater. Lett. 65(9), 1264–1267 (2011)

    Article  Google Scholar 

  51. S. Mathur et al. Size-dependent photoconductance in SnO2 nanowires. Small 1(7), 713–717 (2005)

    Article  Google Scholar 

  52. S. Luo et al., Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients. Appl. Phys. Lett. 88(18), 3112 (2006)

    Google Scholar 

  53. H. He Jr. et al., Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2(1), 116–120 (2006)

    Article  Google Scholar 

  54. J. Hu et al., Large-scale rapid oxidation synthesis of SnO2 nanoribbons. J.Phys.Chem. B 106(15), 3823–3826 (2002)

    Article  Google Scholar 

  55. F.K. Butt et al., Electrical and optical properties of single zigzag SnO2 nanobelts. CrystEngComm 15(11), 2106–2112 (2013)

    Article  Google Scholar 

  56. J. Hu et al., Laser-ablation growth and optical properties of wide and long single-crystal SnO2 Ribbons. Adv. Funct. Mater. 13(6), 493–496 (2003)

    Article  Google Scholar 

  57. A. Kar, S. Kundu, A. Patra, Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J. Phys. Chem. C 115(1), 118–124 (2010)

    Article  Google Scholar 

  58. G. Dar et al., Ce-doped ZnO nanorods for the detection of hazardous chemical. Sens. Actuators B 173, 72–78 (2012)

    Article  Google Scholar 

  59. N. Han et al., Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sens. Actuators B 147(2), 525–530 (2010)

    Article  Google Scholar 

  60. J. Li, H. Fan, X. Jia, Multilayered ZnO nanosheets with 3D porous architectures: synthesis and gas sensing application. J. Phys. Chem. C 114(35), 14684–14691 (2010)

    Article  Google Scholar 

  61. D.E. Williams, K.F. Pratt, Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides. Sens. Actuators B 70(1), 214–221 (2000)

    Article  Google Scholar 

  62. H.S. Hong et al., Selective detection of carbon dioxide using LaOCl-functionalized SnO2 nanowires for air-quality monitoring. Talanta 88, 152–159 (2012)

    Article  Google Scholar 

  63. B. Bahrami et al., Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane. Sens. Actuators B 133(1), 352–356 (2008)

    Article  Google Scholar 

  64. B. Shouli et al., Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators, B 146(1), 129–137 (2010)

    Article  Google Scholar 

  65. Y. Shen et al., Influence of effective surface area on gas sensing properties of WO3 sputtered thin films. Thin Solid Films 517(6), 2069–2072 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Higher Education Commission (HEC) of Pakistan for providing financial support through ‘‘National Research Program for Universities” and CIIT, Islamabad for providing funds under project # 16-27/CRGP/CIIT/IBD/13/225. One of the authors (Muhammad Amin) acknowledges the HEC of Pakistan for the award of Indigenous PhD scholarship in batch-IV and IRSIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazar Abbas Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M., Akhtar, M.S., Ahmad, K.S. et al. Optical and gas sensing properties of SnO2 nanowires grown by vapor–liquid–solid mechanism. J Mater Sci: Mater Electron 28, 17993–18002 (2017). https://doi.org/10.1007/s10854-017-7742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7742-4

Navigation