Skip to main content
Log in

Synthesis and characterization of cerium oxide hybrid with chitosan nanoparticles for enhancing the photodegradation of Congo Red dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles of cerium oxide have great importance in several fields, including great influence on the environment and human health. The preparation nanoparticles of CeO2 hybrid with chitosan has exhibited promising applications in several fields especially degradation of organic pollutants such as dyes and pesticides. This study illustrated a facile, eco-friendly, and low-cost method for synthesis of pure CeO2 and its loading on chitosan NPs with different loading ratios. The as-synthesized catalysts were characterized using UV–Vis, XRD, FT-IR, SEM, EDX, and TEM studies. The presence of an intense peak at 215 nm is detected by the spectrum of UV–Vis indicated by the formation of pure CeO2, where the presence of Ce–O bonds was confirmed by an FT-IR peak at 769.45 cm−1. EDX analysis showed the presence of Ce, O, and C in pure and hybrid CeO2–chitosan NPs. The SEM graph showed an irregular shape with aggregation of NPs, both CeO2 and hybrid CeO2–chitosan NPs. The as-synthesized photocatalysts showed maximum degradation ratios of Congo Red (CR) dye under specified conditions: pH 8, irradiation exposure time = 90 min, catalyst dose = 0.3 g/L, and 50 mg/L CR initial concentration. The Langmuir isotherm model is better fitted than the Freundlich model. Kinetically, the photodegradation reaction is followed the pseudo-second order model with qe ranging between 43.67 and 46.51 mg/g with R2 > 0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Somraksa, A. Suwanboon, P. Amornpitoksuk, C. Randorn. Method. Mater. Res. 23(1), (2020). https://doi.org/10.1590/1980-5373-mr-2019-0627

  2. V. Katheresan, J. Kansedo, S.Y. Lau, J. Environ. Chem. Eng. 6, 4676–4697 (2018)

    Article  CAS  Google Scholar 

  3. Q. Yang, M. Gao, W. Zang, Colloids Surf. A 520, 805–816 (2017)

    Article  CAS  Google Scholar 

  4. L. Nadjia, E. Abdelkader, B. Ahmed, J. Chem. Eng. Process. Technol. 2(2), 1–9 (2011)

    Article  Google Scholar 

  5. M.H. Ali, M.E. Goher, D.G.A. Al-Afify, Egypt. J. Aquat. Biol. Fish. 23(1), 253–263 (2019)

    Article  Google Scholar 

  6. M.H. Ali, K.M. Al-Qahtani, S.M. El-Sayed, Egypt. J. Aquat. Res. 45(4), 321–328 (2019)

    Article  Google Scholar 

  7. J. Ouyang, Z. Zhao, S.L. Suib, H. Yang, J. Colloid Interface Sci. 539, 135–145 (2019)

    Article  CAS  Google Scholar 

  8. M. Tamura, K.I. Shimizu, A. Satsuma, Appl. Catal. A 433, 135–145 (2012)

    Article  Google Scholar 

  9. N. Nelson, Catalytic upgrading of phenolic compounds using ceria-based materials. Ph. D Thesis, Iowa State University (2016)

  10. M.A. Ehsan, R. Naeem, A. Rehman, A.S. Hakeem, M. Mazhar, J. Mater. Sci. Mater. Electron. 29(15), 13209–13219 (2018)

    Article  CAS  Google Scholar 

  11. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116(10), 5987–6041 (2016)

    Article  CAS  Google Scholar 

  12. B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.C. Volta, J. Phys. Chem. B 107(22), 5162–5167 (2003)

    Article  CAS  Google Scholar 

  13. Y.P. Fu, S.B. Wen, C.H. Lu, J. Am. Ceram. Soc. 91(1), 127–131 (2008)

    Article  CAS  Google Scholar 

  14. S. Rajeshkumar, P. Naik, Biotechnol. Rep. 17, 1–5 (2018)

    Article  CAS  Google Scholar 

  15. X. Fang, H. Song, J. Photochem. Photobiol. B 191, 83–87 (2019)

    Article  CAS  Google Scholar 

  16. K. Azuma, R. Izumi, T. Osaki, S. Ifuku, M. Morimoto, H. Saimoto, Y. Okamoto, J. Funct. Biomater. 6(1), 104–142 (2015)

    Article  CAS  Google Scholar 

  17. A.R. Binupriya, M. Sathishkumar, K. Swaminathan, C.S. Kuz, S.E. Yun, Bioresour. Technol. 99(5), 1080–1088 (2008)

    Article  CAS  Google Scholar 

  18. L.V. González-Gutiérrez, G. González-Alatorre, E.M. Escamilla-Silva, World J. Microbiol. Biotechnol. 25(3), 415–426 (2009)

    Article  Google Scholar 

  19. A. Afkhami, R. Moosavi, J. Hazard. Mater. 174(1–3), 398–403 (2010)

    Article  CAS  Google Scholar 

  20. S.A. Bhat, F. Zafar, A.H. Mondal, A. Kareem, Q.U. Mirza, S. Khan, N. Nishat, J. Iran. Chem. Soc. 17(1), 215–227 (2020)

    Article  CAS  Google Scholar 

  21. S. Erdemoğlu, S. Aksu, F. Sayılkan, B. Izgi, M. Asiltürk, H. Sayılkan, Ş Güçer, J. Hazard. Mater. 155(3), 469–476 (2008)

    Article  Google Scholar 

  22. Á.G. Aponte, M.A. Ramírez, Y.C. Mora, J.F. Santa Marín, R.B. Sierra, AIMS Mater. Sci. 7(4), 468 (2020)

    Article  CAS  Google Scholar 

  23. M.E. Khan, M.M. Khan, M.H. Cho, Sci. Rep. 7(1), 1–17 (2017)

    Article  Google Scholar 

  24. J. Calvache-Muñoz, F.A. Prado, J.E. Rodriguez-Paez, Colloids Surf. A Physicochem. Eng. Asp. 529, 146–159 (2017)

    Article  Google Scholar 

  25. R.P. Senthilkumar, V. Bhuvaneshwari, R. Ranjithkumar, S. Sathiyavimal, V. Malayaman, B. Chandarshekar, Int. J. Biol. Macromol. 104, 1746–1752 (2017)

    Article  CAS  Google Scholar 

  26. B. Mandal, A. Mondal, S.S. Ray, A. Kundu, Dalton Trans. 45(4), 1679–1692 (2016)

    Article  CAS  Google Scholar 

  27. A.B. Sifontes, G. Gonzalez, J.L. Ochoa, L.M. Tovar, T. Zoltan, E. Canizales, Mater. Res. Bull. 46(11), 1794–1799 (2011)

    Article  CAS  Google Scholar 

  28. S.A. Khan, A. Ahmad, Mater. Res. Bull. 48(10), 4134–4138 (2013)

    Article  CAS  Google Scholar 

  29. D.H. Prasad, S.Y. Park, H.I. Ji, H.R. Kim, J. Son, B.K. Kim, J.H. Lee, J. Phys. Chem. C 116(5), 3467–3476 (2012)

    Article  CAS  Google Scholar 

  30. R. Suresh, V. Ponnuswamy, R. Mariappan, Appl. Surf. Sci. 273, 457–464 (2013)

    Article  CAS  Google Scholar 

  31. H. Hassannejad, A. Nouri, Int. J. Electrochem. Sci. 11, 2106–2118 (2016)

    CAS  Google Scholar 

  32. D. Wei, W. Sun, W. Qian, Y. Ye, X. Ma, Carbohydr. Res. 344(17), 2375–2382 (2009)

    Article  CAS  Google Scholar 

  33. F. Rahnama, H. Ashrafi, M. Akhond, G. Absalan, Colloids Surf. A 613, 126068 (2021)

    Article  CAS  Google Scholar 

  34. Z.U. Khan, A. Khan, N.S. Shah, I.U. Din, M.A. Salam, J. Iqbal et al., Surf. Interfaces 23, 100944 (2021)

    Article  Google Scholar 

  35. E.J.S. Christy, R. Alagar, M. Dhanu, A. Pius, Environ. Nanotechnol. Monit. Manag. 14, 100365 (2020)

    Google Scholar 

  36. S. Sathiyavimal, S. Vasantharaj, M. Shanmugavel, E. Manikandan, P. Nguyen-Tri, K. Brindhadevi, A. Pugazhendhi, Prog. Org. Coat. 148, 105890 (2020)

    Article  CAS  Google Scholar 

  37. B. Boutra, N. Güy, M. Özacar, M. Trari, J. Magn. Magn. Mater. 497, 165994 (2020)

    Article  CAS  Google Scholar 

  38. F. Ebrahimi, K. Mohammadi, M.M. Barouti, M. Habibi, Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1694729

  39. K. Saravanakumar, S. Muthupoongodi, V. Muthuraj, J. Rare Earths 37(8), 853–860 (2019)

    Article  CAS  Google Scholar 

  40. L. Ai, Y. Zeng, Chem. Eng. J. 215, 269–278 (2013)

    Article  Google Scholar 

  41. L. Wang, J. Li, C. Mao, L. Zhang, L. Zhao, Q. Jiang, J. Chem. Soc. Dalton Trans. 42(22), 8070–8077 (2013)

    Article  CAS  Google Scholar 

  42. G. McKay, H.S. Blair, J.R. Gardner, J. Appl. Polym. Sci. 27(8), 3043–3057 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by a grant from the Research Center of the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University. The authors also thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. H. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Onazi, W.A., Ali, M.H.H. Synthesis and characterization of cerium oxide hybrid with chitosan nanoparticles for enhancing the photodegradation of Congo Red dye. J Mater Sci: Mater Electron 32, 12017–12030 (2021). https://doi.org/10.1007/s10854-021-05832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05832-7

Navigation