Skip to main content
Log in

Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Face-centered cubic structure of nickel oxide (NiO) nanoparticles with 30 nm average size was synthesized by co-precipitation method with some modification in synthesis, calcination time period and temperature. The morphology, particle size, surface area and pore size of NiO nanoparticles were determined by TEM, XRD and BET. FTIR and UV–visible analysis confirmed the formation of NiO nanoparticles. NiO nanoparticles have been used as photocatalyst for Congo red (CR) degradation from aqueous solution. The photocatalytic degradation of CR dye was analyzed by four parameters such as the concentration of CR dye, the effect of contact time, the effect of pH and dose of NiO nanoparticle catalyst. The maximum degradation of CR dye (84%) by NiO nanoparticles was determined with respect to contact time. Antioxidant activity increases as the NiO nanoparticle concentration increases. The concentration of NiO nanoparticles efficiently enhances the bacterial inhibition against gram-positive and gram-negative bacteria. The bacterial strains such as K. pneumonia 700603 and B. subtilis 5902 showed maximum zone of inhibition (15 mm) at 40 mg/ml concentration, and minimum inhibitory concentration 62.5 μg/ml by NiO nanoparticles, respectively. The photocatalytic degradation of CR and antibacterial study acknowledge that the NiO nanoparticles are efficient photocatalysts for degradation of CR dye and inhibition against different bacterial strains. NiO nanoparticles will be used to provide clean and low-cost drinking water without harmful dyes and pathogenic microbes generated in industrial wastewater.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Sun, J. Jiang, Y. Xiao, J. Du, Efficient removal of polycyclic aromatic hydrocarbons, dyes, and heavy metal ions by a homopolymer vesicle. ACS Appl. Mater. Interfaces 10(1), 713–722 (2018)

    CAS  PubMed  Google Scholar 

  2. Y.F. Sun, S.B. Liu, F.L. Meng et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012)

    CAS  PubMed  Google Scholar 

  3. V.K. Gupta, R. Jain, A. Mittal et al., Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng. C 32(1), 12–17 (2012)

    CAS  Google Scholar 

  4. R. Tietze, J. Zaloga, H. Unterweger et al., Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 468(1), 463–470 (2015)

    CAS  PubMed  Google Scholar 

  5. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8(2), 95–103 (2014)

    CAS  Google Scholar 

  6. F. Ye, L. Zhang, X. Yin et al., Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics. J. Eur. Ceram. Soc. 34(2), 205–215 (2014)

    CAS  Google Scholar 

  7. L. Zhang, Y. Jiang, Y. Ding et al., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007)

    Google Scholar 

  8. O. Yamamoto, M. Komatsu, J. Sawai, Z.E. Nakagawa, Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci. Mater. Med. 15(8), 847–851 (2004)

    CAS  PubMed  Google Scholar 

  9. S. Azizi, M.B. Ahmad, N.A. Ibrahim et al., Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: fabrication, characterization and properties. Int. J. Mol. Sci. 15(6), 11040–11053 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biol. 120(3), 66–73 (2013)

    CAS  Google Scholar 

  11. A.R. Binupriya, M. Sathishkumar, K. Swaminathan et al., Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes. Bioresour. Technol. 99(5), 1080–1088 (2008)

    CAS  PubMed  Google Scholar 

  12. L.V. González-Gutiérrez, G. González-Alatorre, E.M. Escamilla-Silva, Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor. World J. Microbiol. Biotechnol. 25(3), 415–426 (2009)

    Google Scholar 

  13. L. Rejniak, H. Piotrowska, Effect of malachite green, Congo red and safranin on cell division in gemmae of Allium cepa. Nature 209(5022), 517–518 (1966)

    CAS  PubMed  Google Scholar 

  14. A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174(1–3), 398–403 (2010)

    CAS  PubMed  Google Scholar 

  15. H. Lachheb, E. Puzenat, A. Houas et al., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B Environ. 39(1), 75–90 (2002)

    CAS  Google Scholar 

  16. G. Jayakumar, A. Albert Irudayaraj, A. Dhayal Raj, Photocatalytic degradation of methylene blue by nickel oxide nanoparticles, in Materials Today: Proceedings, vol. 4, no. 11 (2017), pp. 11690–11695

    Google Scholar 

  17. U. Farooq, R. Phul, S.M. Alshehri et al., Electrocatalytic and enhanced photocatalytic applications of sodium niobate nanoparticles developed by citrate precursor route. Sci. Rep. 9(1), 4488 (2019)

    PubMed  PubMed Central  Google Scholar 

  18. H. Eskandarloo, A. Badiei, M.A. Behnajady, Study of the effect of additives on the photocatalytic degradation of a triphenylmethane dye in the presence of immobilized TiO2/NiO nanoparticles: artificial neural network modeling. Ind. Eng. Chem. Res. 53(17), 6881–6895 (2014)

    CAS  Google Scholar 

  19. M. Yadav, D.K. Mishra, J.S. Hwang, Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Appl. Catal. A Gen. 425–426, 110–116 (2012)

    Google Scholar 

  20. A. Jegatha Christy, M. Umadevi, Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity. Mater. Res. Bull. 48(10), 4248–4254 (2013)

    CAS  Google Scholar 

  21. M.S. Akhtar, M.A. Alam, K. Tauer et al., Core–shell structured epoxide functional NiO/SiO2 nanocomposite particles and photocatalytic decolorization of Congo red aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 529, 783–792 (2017)

    CAS  Google Scholar 

  22. P.K. Stoimenov, V. Zaikovski, K.J. Klabunde, Novel halogen and interhalogen adducts of nanoscale magnesium oxide. J. Am. Chem. Soc. 125(42), 12907–12913 (2003)

    CAS  PubMed  Google Scholar 

  23. K.M. Reddy, K. Feris, J. Bell et al., Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 2139021–2139023 (2007)

    CAS  PubMed  Google Scholar 

  24. A.J. Huh, Y.J. Kwon, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156(2), 128–145 (2011)

    CAS  PubMed  Google Scholar 

  25. Y. Xie, Y. He, P.L. Irwin et al., Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts, Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37, 251–277 (2007)

    CAS  PubMed  Google Scholar 

  27. G. Applerot, J. Lellouche, N. Perkas et al., ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv. 2(3), 2314 (2012)

    CAS  Google Scholar 

  28. V. Helan, J.J. Prince, N.A. Al-Dhabi et al., Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys. 6, 712–718 (2016)

    Google Scholar 

  29. A. Ayeshamariam, G.V. Sankaracharyulu, M. Kashif et al., Antibacterial activity studies of Ni and SnO2 loaded Chitosan beads. Mater. Sci. Forum 833, 110–112 (2015)

    Google Scholar 

  30. M. Costa, J. Simmons-Hansen, C.W.M. Bedrossian et al., Phagocytosis, cellular distribution, and carcinogenic activity of particulate nickel compounds in tissue culture. Cancer Res. 41(7), 2868–2876 (1981)

    CAS  PubMed  Google Scholar 

  31. K.T. Jones, G.R. Sharpe, Ni+ blocks the Ca2+ influx in human keratinocytes following a rise in extracellular Ca2+. Exp. Cell Res. 212(2), 409–413 (1994)

    CAS  PubMed  Google Scholar 

  32. S.H. Robison, O. Cantoni, J.D. Heck, M. Costa, Soluble and insoluble nickel compounds induce DNA repair synthesis in cultured mammalian cells. Cancer Lett. 17(3), 273–279 (1983)

    CAS  PubMed  Google Scholar 

  33. A.R. Oller, Respiratory carcinogenecity assessment of soluble nickel compounds. Environ. Health Perspect. 110(5), 841–844 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Schwerdtle, A. Hartwig, Bioavailability and genotoxicity of soluble and particulate nickel compounds in cultured human lung cells. Materwiss Werksttech 37(6), 521–525 (2006)

    CAS  Google Scholar 

  35. P. Gogoi, B.J. Saikia, S.K. Dolui, Effects of nickel oxide (NiO) nanoparticles on the performance characteristics of the jatropha oil based alkyd and epoxy blends. J. Appl. Polym. Sci. 132(8), 41490 (2015)

    Google Scholar 

  36. Q. Wang, X. Shi, J. Xu, J.C. Crittenden, E. Liu, Y. Zhang, Y. Cong, Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: influence of calcination temperature. J. Hazard. Mater. 307, 213–220 (2016)

    CAS  PubMed  Google Scholar 

  37. A.U. Mirza, A. Kareem, S.A.A. Nami et al., Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: characterization, antibacterial and antioxidant activity. J. Photochem. Photobiol. B Biol. 185, 262–274 (2018)

    CAS  Google Scholar 

  38. J. Keraudy, J. García Molleja, A. Ferrec et al., Structural, morphological and electrical properties of nickel oxide thin films deposited by reactive sputtering. Appl. Surf. Sci. 357, 838–844 (2015)

    CAS  Google Scholar 

  39. P.A. Sheena, K.P. Priyanka, N. Aloysius Sabu et al., Effect of electron beam irradiation on the structure and optical properties of nickel oxide nanocubes. Bull. Mater. 38(4), 825–830 (2015)

    CAS  Google Scholar 

  40. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol–gel method. J. Mater. Sci. Mater. Electron. 23(3), 728–732 (2012)

    CAS  Google Scholar 

  41. G.J. Li, S. Kawi, Synthesis, characterization and sensing application of novel semiconductor oxides. Talanta 45(4), 759–766 (1998)

    CAS  PubMed  Google Scholar 

  42. A. Aslani, V. Oroojpour, M. Fallahi, Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles. Appl. Surf. Sci. 257(9), 4056–4061 (2011)

    CAS  Google Scholar 

  43. A. Santhoshkumar, H.P. Kavitha, R. Suresh, Hydrothermal synthesis, characterization and antibacterial activity of NiO nanoparticles. J. Adv. Chem. Sci. J. Adv. Chem. Sci. 2(22), 230–232 (2016)

    Google Scholar 

  44. S.A. Bhat, A. Kareem, A. Mohammad et al., Development and electrical conductivity of PVA/MF-based nanocomposite doped with NiO nanoparticles. Ion. (Kiel) 25(5), 2183–2193 (2019)

    CAS  Google Scholar 

  45. M.A. Peck, M.A. Langell, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24(23), 4483–4490 (2012)

    CAS  Google Scholar 

  46. A.S. Adekunle, J.A.O. Oyekunle, O.S. Oluwafemi et al., Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2 ) and nitric oxide (NO). Int. J. Electrochem. Sci. 9(6), 3008–3021 (2014)

    Google Scholar 

  47. Q. Li, L.S. Wang, B.Y. Hu et al., Preparation and characterization of NiO nanoparticles through calcination of malate gel. Mater. Lett. 61(8–9), 1615–1618 (2007)

    CAS  Google Scholar 

  48. R.A. Patil, R.S. Devan, J.H. Lin et al., Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol. Energy Mater. Sol. Cells 112(112), 91–96 (2013)

    CAS  Google Scholar 

  49. H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater. 321, 629–638 (2017)

    CAS  PubMed  Google Scholar 

  50. S. Mishra, P. Yogi, P.R. Sagdeo, R. Kumar, Mesoporous nickel oxide (NiO) nanopetals for ultrasensitive glucose sensing. Nanoscale Res. Lett. 13(1), 3–7 (2018)

    Google Scholar 

  51. M.H. Habibi, M.H. Rahmati, The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO–CdS core–shell nano-structure coated on glass by Doctor Blade method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 160–164 (2015)

    CAS  PubMed  Google Scholar 

  52. J. Fenoll, P. Hellín, C.M. Martínez et al., Semiconductor-sensitized photodegradation of s-triazine and chloroacetanilide herbicides in leaching water using TiO2 and ZnO as catalyst under natural sunlight. J. Photochem. Photobiol. A Chem. 238, 81–87 (2012)

    CAS  Google Scholar 

  53. N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A Chem. 273(1–2), 177–185 (2007)

    CAS  Google Scholar 

  54. M. Wang, L. Zhang, G. Zhang et al., In situ degradation of antibiotic residues in medical intravenous infusion bottles using high energy electron beam irradiation. Sci. Rep. 7, 39928 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. P. Mohammadyari, A. Nezamzadeh-Ejhieh, Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nano-particles to improve its activity in photodegradation of 2-nitrotoluene. RSC Adv. 5, 75300–75310 (2015)

    CAS  Google Scholar 

  56. H. Hidaka, K. Nohara, J.C. Zhao et al., Photodegradation of surfactants 14. Formation of Nh +4 and No3 ions for the photocatalyzed mineralization of nitrogen-containing cationic, nonionic and amphoteric surfactants. J. Photochem. Photobiol. A Chem. 91(2), 145–152 (1995)

    CAS  Google Scholar 

  57. L. Valgimigli, A. Baschieri, R. Amorati, Antioxidant activity of nanomaterials. J. Mater. Chem. B 6(14), 2036–2051 (2018)

    CAS  Google Scholar 

  58. S. Gunalan, R. Sivaraj, V. Rajendran, Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 22(6), 693–700 (2012)

    Google Scholar 

  59. M. Vautier, C. Guillard, J.-M. Herrmann, Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J. Catal. 201(1), 46–59 (2001)

    CAS  Google Scholar 

  60. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4(3), 707–716 (2008)

    CAS  PubMed  Google Scholar 

  61. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011)

    CAS  PubMed  Google Scholar 

  62. C. Carlson, S.M. Hussein, A.M. Schrand et al., Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112(43), 13608–13619 (2008)

    CAS  PubMed  Google Scholar 

  63. B. Simoncic, B. Tomsic, Structures of novel antimicrobial agents for textiles: a review. Text. Res. J. 80(16), 1721–1737 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

Author Shahnawaz Ahmad Bhat wishes to acknowledge university Grants Commission, New Delhi, India, for non-net fellowship. Dr Fahmina Zafar is thankful to Dept. of Science and Technology, New Delhi, India, for the Postdoc fellowship under the Women Scientists Scheme (WOS) for research in basic/applied science (Ref. no. SR/WOSA/CS-97/2016). Authors are also thanks to All India Institute of medical science for TEM micrographs and center instrumentation facilities (CIF), center for interdisciplinary research in the basic science, Jamia Millia Islamia for FTIR, XRD and UV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Nishat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.A., Zafar, F., Mondal, A.H. et al. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J IRAN CHEM SOC 17, 215–227 (2020). https://doi.org/10.1007/s13738-019-01767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01767-3

Keywords

Navigation