Skip to main content

Advertisement

Log in

Facile fabrication of CeO2–TiO2 thin films via solution based CVD and their photoelectrochemical studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present work reports a single step deposition protocol for the growth of robust, durable and homogenous CeO2–TiO2 composite thin films for the investigation of their photoelectrochemical (PEC) properties. The transparent methanol solution of triacetatocerium (III) hydrate and of tetraisopropoxytitanium (IV) precursors in 1:1 mol ratio was employed in aerosol assisted chemical vapor deposition (AACVD) on FTO substrates at temperatures of 550 and 600 °C in the ambient air. These precursors were converted into their trifluroacetates in situ, under these deposition conditions, for their compatibility in the AACVD procedure. XRD, SEM, EDX and XPS analyses verified the formation of uniformly dispersed crystalline CeO2 and TiO2 phases in spherical shaped morphologies and a direct bandgap of 2.6 eV was measured from the UV–Visible spectrophotometry. PEC studies of the composite films revealed that the heterojunction developed between n-type CeO2 and n-type TiO2 facilitated the separation and transportation of electrons and holes, leading to a promising photocurrent density of about 1.0 mA cm− 2 and prolonged photo stability measured under one-sun illumination (100 mW cm− 2) which is up to 60 min at 0.7 V versus Ag/AgCl. This behavior was further confirmed from electrochemical impedance spectroscopy and Bode phase angle measurements. It was also shown that the films fabricated at 550 °C has higher porosity leading to larger interface contacts and thus was able to generate higher photo activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503–6570 (2010)

    Article  Google Scholar 

  2. S.S. Mao, S. Shen, Nat. Photonics 7, 944–946 (2013)

    Article  Google Scholar 

  3. H. Zhang, X. Liu, Y. Li, Q. Sun, Y. Wang, B.J. Wood, P. Liu, D. Yang, H. Zhao, J. Mater. Chem. 22, 2465–2472 (2012)

    Article  Google Scholar 

  4. K.-N.P. Kumar, K. Keizer, A. Burggraaf, T. Okubo, H. Nagamoto, S. Morooka, Nature 358, 48–51 (1992)

    Article  Google Scholar 

  5. M.A. Mansoor, M. Mazhar, A. Pandikumar, H. Khaledi, H.N. Ming, Z. Arifin, Int. J. Hydrogen Energy 41, 9267–9275 (2016)

    Article  Google Scholar 

  6. M.A. Mansoor, M. Mazhar, V. McKee, Z. Arifin, Polyhedron 75, 135–140 (2014)

    Article  Google Scholar 

  7. Y. Gun, G.Y. Song, V.H.V. Quy, J. Heo, H. Lee, K.-S. Ahn, S.H. Kang, ACS Appl. Mater. Interfaces 7, 20292–20303 (2015)

    Article  Google Scholar 

  8. J.-S. Yang, W.-H. Lin, C.-Y. Lin, B.-S. Wang, J.-J. Wu, ACS Appl. Mater. Interfaces 7, 13314–13321 (2015)

    Article  Google Scholar 

  9. S. Ho-Kimura, S.J. Moniz, A.D. Handoko, J. Tang, J. Mater. Chem. A 2, 3948–3953 (2014)

    Article  Google Scholar 

  10. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, ACS Central Sci. 2, 80–88 (2016)

    Article  Google Scholar 

  11. M. Radecka, A. Wnuk, A. Trenczek-Zajac, K. Schneider, K. Zakrzewska, Int. J. Hydrogen Energy 40, 841–851 (2015)

    Article  Google Scholar 

  12. J. Gong, F. Meng, X. Yang, Z. Fan, H. Li, J. Alloy. Compd. 689, 606–616 (2016)

    Article  Google Scholar 

  13. F. Meng, L. Wang, J. Cui, J. Alloy. Compd. 556, 102–108 (2013)

    Article  Google Scholar 

  14. L. Wang, F. Meng, Mater. Res. Bull. 48, 3492–3498 (2013)

    Article  Google Scholar 

  15. L. Wang, F. Meng, K. Li, F. Lu, Appl. Surf. Sci. 286, 269–274 (2013)

    Article  Google Scholar 

  16. H.Y. Kim, M.S. Hybertsen, P. Liu, Nano Lett. 17, 348–354 (2017)

    Article  Google Scholar 

  17. R. Verma, S.K. Samdarshi, J. Singh, J. Phys. Chem. C 119, 23899–23909 (2015)

    Article  Google Scholar 

  18. R. Fiorenza, M. Bellardita, T. Barakat, S. Scirè, L. Palmisano, J. Photochem. Photobiol. A 352, 25–34 (2018)

    Article  Google Scholar 

  19. K.-H. Chung, D.-C. Park, Catal. Today 30, 157–162 (1996)

    Article  Google Scholar 

  20. J.S. Valente, F. Tzompantzi, J. Prince, Appl. Catal. B 102, 276–285 (2011)

    Article  Google Scholar 

  21. A. Zhang, J. Zhang, Mater. Lett. 63, 1939–1942 (2009)

    Article  Google Scholar 

  22. S. Song, L. Xu, Z. He, J. Chen, X. Xiao, B. Yan, Environ. Sci. Technol. 41, 5846–5853 (2007)

    Article  Google Scholar 

  23. S. Hu, F. Zhou, L. Wang, J. Zhang, Catal. Commun. 12, 794–797 (2011)

    Article  Google Scholar 

  24. L. Li, B. Yan, J. Non-Cryst. Solids 355, 776–779 (2009)

    Article  Google Scholar 

  25. R. Liu, H. Ye, X. Xiong, H. Liu, Mater. Chem. Phys. 121, 432–439 (2010)

    Article  Google Scholar 

  26. V. Štengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217–226 (2009)

    Article  Google Scholar 

  27. J. Xiao, T. Peng, R. Li, Z. Peng, C. Yan, J. Solid State Chem. 179, 1161–1170 (2006)

    Article  Google Scholar 

  28. Z. Liu, B. Guo, L. Hong, H. Jiang, J. Phys. Chem. Solids 66, 161–167 (2005)

    Article  Google Scholar 

  29. J. Fang, H. Bao, B. He, F. Wang, D. Si, Z. Jiang, Z. Pan, S. Wei, W. Huang, J. Phys. Chem. C 111, 19078–19085 (2007)

    Article  Google Scholar 

  30. L. Zhang, J. Zhang, H. Jiu, X. Zhang, M. Xu, J. Mater. Sci. 50, 5228–5237 (2015)

    Article  Google Scholar 

  31. S. Luo, T.-D. Nguyen-Phan, A.C. Johnston-Peck, L. Barrio, S. Sallis, D.A. Arena, S. Kundu, W. Xu, L.F. Piper, E.A. Stach, J. Phys. Chem. C 119, 2669–2679 (2015)

    Google Scholar 

  32. B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Surf. Sci. 595, 203–211 (2005)

    Article  Google Scholar 

  33. B. Jiang, S. Zhang, X. Guo, B. Jin, Y. Tian, Appl. Surf. Sci. 255, 5975–5978 (2009)

    Article  Google Scholar 

  34. U. Qureshi, C.W. Dunnill, I.P. Parkin, Appl. Surf. Sci. 256, 852–856 (2009)

    Article  Google Scholar 

  35. M.A. Ehsan, A.S. Hakeem, H. Khaledi, M. Mazhar, M.M. Shahid, A. Pandikumar, N.M. Huang, RSC Adv. 5, 103852–103862 (2015)

    Article  Google Scholar 

  36. M.A. Ehsan, H. Khaledi, Z. Arifin, M. Mazhar, Polyhedron 98, 190–195 (2015)

    Article  Google Scholar 

  37. M.A. Ehsan, H. Khaledi, A. Pandikumar, N.M. Huang, Z. Arifin, M. Mazhar, J. Solid State Chem. 230, 155–162 (2015)

    Article  Google Scholar 

  38. M.A. Ehsan, H. Khaledi, A. Pandikumar, P. Rameshkumar, N.M. Huang, Z. Arifin, M. Mazhar, New J. Chem. 39, 7442–7452 (2015)

    Article  Google Scholar 

  39. M. Mansoor, K. Munawar, S. Lim, N.-M. Huang, M. Mazhar, M. Akhtar, M. Siddique, New J. Chem. 41, 7322–7330 (2017)

    Article  Google Scholar 

  40. K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, RSC Adv. 7, 15885–15893 (2017)

    Article  Google Scholar 

  41. F. Ghodsi, F. Tepehan, G. Tepehan, Surf. Sci. 601, 4497–4501 (2007)

    Article  Google Scholar 

  42. M.A. Ehsan, R. Naeem, V. McKee, A.S. Hakeem, M. Mazhar, Sol. Energy Mater. Sol. Cells 161, 328–337 (2017)

    Article  Google Scholar 

  43. C. Wang, C. Shao, X. Zhang, Y. Liu, Inorg. Chem. 48, 7261–7268 (2009)

    Article  Google Scholar 

  44. Z. Zhang, C. Shao, L. Zhang, X. Li, Y. Liu, J. Colloid Interface Sci. 351, 57–62 (2010)

    Article  Google Scholar 

  45. Y. Tan, S. Zhang, R. Shi, W. Wang, K. Liang, Int. J. Hydrogen Energy 41, 5437–5444 (2016)

    Article  Google Scholar 

  46. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Mater. Lett. 175, 36–39 (2016)

    Article  Google Scholar 

  47. S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, RSC Adv. 4, 16782–16791 (2014)

    Article  Google Scholar 

  48. J. Van Elp, R. Potze, H. Eskes, R. Berger, G. Sawatzky, Phys. Rev. B 44, 1530 (1991)

    Article  Google Scholar 

  49. M.A. Mansoor, M. Mazhar, M. Ebadi, H.N. Ming, M.A.M. Teridi, L.K. Mun, New J. Chem. 40, 5177–5184 (2016)

    Article  Google Scholar 

  50. V. Markoulaki, Ι,I.T. Papadas, I. Kornarakis, G.S. Armatas, Nanomaterials, 5, 1971–1984 (2015)

    Article  Google Scholar 

  51. R. Verma, S. Samdarshi, J. Singh, J. Phys. Chem. C 119, 23899–23909 (2015)

    Article  Google Scholar 

  52. M. Mansoor, N. Huang, V. McKee, T.N. Peiris, K. Wijayantha, Z. Arifin, M. Misran, M. Mazhar, Sol. Energy Mater. Sol. Cells 137, 258–264 (2015)

    Article  Google Scholar 

  53. H. Pan, S.H. Ko, C.P. Grigoropoulos, J. Heat Transfer 130, 092404 (2008)

    Article  Google Scholar 

  54. H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, W. Li, C. Cao, J. Phys. Chem. A 104, 7016–7020 (2000)

    Article  Google Scholar 

  55. J. Yu, Y. Wang, W. Xiao, J. Mater. Chem. A 1, 10727–10735 (2013)

    Article  Google Scholar 

  56. C. Karunakaran, P. Gomathisankar, ACS Sustain. Chem. Eng. 1, 1555–1563 (2013)

    Article  Google Scholar 

  57. D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816–854 (2017)

    Article  Google Scholar 

  58. M. Aslam, I.M. Ismail, S. Chandrasekaran, T. Almeelbi, A. Hameed, RSC Adv. 4, 49347–49359 (2014)

    Article  Google Scholar 

  59. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, ACS Appl. Mater. Interfaces 4, 3718–3723 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge High-Impact Research scheme Grant # UM.C/625/1/HIR/242, UMRG scheme Grant # RP007-13AET and HIR-MOHE Grant # UM.S/P/628/3SC21 of the University of Malaya, Malaysia, for funding. AR acknowledge the support of KFUPM start up project # SR151005. The support of CENT-KFUPM is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Ehsan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1195 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsan, M.A., Naeem, R., Rehman, A. et al. Facile fabrication of CeO2–TiO2 thin films via solution based CVD and their photoelectrochemical studies. J Mater Sci: Mater Electron 29, 13209–13219 (2018). https://doi.org/10.1007/s10854-018-9445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9445-x

Navigation