Skip to main content
Log in

Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and 1–4 at.% Ni-doped ZnO (N0Z-N4Z) nanostructures have been successfully prepared by simple and cost-effective co-precipitation method. The prepared nanostructures were studied using XRD, FESEM, HRTEM, EDX, FTIR, UV–Visible absorption and XPS techniques. The XRD study revealed that the hexagonal wurtzite structure of pure and Ni doped ZnO nanostructures, and their preferred peak growth orientation is along (101) plane without inferior phases in Ni-doped ZnO samples. The morphological investigation of Ni doped ZnO samples by FESEM and HRTEM techniques exhibited nanorods. The average diameter and length of nanorods are 25–80 nm and 140–410 nm. The results of UV–Visible absorption spectroscopy of Ni-doped ZnO nanostructures indicate red shift with varying amounts of Ni concentration. The estimated band gaps were obtained 3.11, 3.06, 3.02, 2.99 and 2.97 eV of N0Z, N1Z, N2Z, N3Z and N4Z nanostructures respectively. The NO2 gas sensing performance of fabricated N0Z-N4Z sensors were tested at different working temperatures (120–280 °C) and concentrations (5–100 ppm). Among them, the N2Z sensor showed stable, reproducible and the highest response (356%) when exposed to 100 ppm NO2 gas at 200 °C working temperature. The probable sensing mechanism of NO2 gas by Ni-doped ZnO nanostructures is investigated and discussed. Sensing response of N2Z gas sensor was also studied for 100 ppm Cl2, SO2 and H2S gases at 200 °C operating temperature and it appeared for most selective towards NO2 gas. The present study reveals that N2Z nanostructure can be attractive material as a sensor for recognition of hazardous NO2 gas at low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Irimpan, A. Deepthy, B. Krishnan, L.M. Kukreja, V.P.N. Nampoori, P. Radhakrishnan, Opt. Commun. 281(10), 2938–2943 (2008)

    Article  CAS  Google Scholar 

  2. R. Dhahri, S.G. Leonardi, M. Hjiri, L. El Mir, A. Bonavita, N. Donato, G. Neri, Sensors Actuators B Chem. 239, 36–44 (2017)

    Article  CAS  Google Scholar 

  3. U.T. Nakate, R. Ahmad, P. Patil, K.S. Bhat, Y. Wang, T. Mahmoudi, Y.B. Hahn, Int. J. Hydrogen Energ. 44(29), 15677–15688 (2019)

    Article  CAS  Google Scholar 

  4. O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Marchenko, I.M. Tiginyanu, A.N. Redkin, Sensors Actuators B Chem. 144(1), 56–66 (2010)

    Article  CAS  Google Scholar 

  5. A.R. Nimbalkar, M.G. Patil, Physica B Condens. Matter. 527, 7–15 (2017)

    Article  CAS  Google Scholar 

  6. A. Resmini, U. Anselmi-Tamburini, S.M. Emamjomeh, V. Paolucci, I.G. Tredici, C. Cantalini, Thin Solid Films 618, 246–252 (2016)

    Article  CAS  Google Scholar 

  7. C.H. Tan, S.T. Tan, H.B. Lee, R.T. Ginting, H.F. Oleiwi, C.C. Yap, M. Yahaya, Sensors Actuators B Chem. 248, 140–152 (2017)

    Article  CAS  Google Scholar 

  8. S. Bhatia, N. Verma, R.K. Bedi, Results Phys. 7, 801–806 (2017)

    Article  Google Scholar 

  9. F. Shao, J.D. Fan, F. Hernández-Ramírez, C. Fabrega, T. Andreu, A. Cabot, S.Z. Ali, Sensors Actuators B Chem. 226, 110–117 (2016)

    Article  CAS  Google Scholar 

  10. M. Ge, T. Xuan, G. Yin, J. Lu, D. He, Sensors Actuators B Chem. 220, 356–361 (2015)

    Article  CAS  Google Scholar 

  11. A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Appl. Surf. Sci. 280, 598–604 (2013)

    Article  CAS  Google Scholar 

  12. S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, L.E.L. Mir, Mater. Chem. Phys. 255, 123643 (2020)

    Article  CAS  Google Scholar 

  13. A.R. Nimbalkar, M.G. Patil, Mater. Sci. Semicond. Process. 71, 332–341 (2017)

    Article  CAS  Google Scholar 

  14. V. Kruefu, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Sensors Actuators B Chem. 156(1), 360–367 (2011)

    Article  CAS  Google Scholar 

  15. J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sensors Actuators B Chem. 297, 126693 (2019)

    Article  CAS  Google Scholar 

  16. X. Wang, M. Zhao, F. Liu, J. Jia, X. Li, L. Cao, Ceram. Int. 39(3), 2883–2887 (2013)

    Article  CAS  Google Scholar 

  17. S.K. Lim, S.H. Hong, S.H. Hwang, W.M. Choi, S. Kim, H. Park, M.G. Jeong, J. Mater. Sci. Technol. 31(6), 639–644 (2015)

    Article  CAS  Google Scholar 

  18. R. Lopez, E. Vigueras-Santiago, A.R. Vilchis-Nestor, V.H. Castrejon-Sanchez, M.A. Camacho-Lopez, N. Torres-Gomez, Results Phys. 7, 1818–1823 (2017)

    Article  Google Scholar 

  19. E. Wongrat, N. Chanlek, C. Chueaiarrom, W. Thupthimchun, B. Samransuksamer, S. Choopun, Ceram. Int. 43, S557–S566 (2017)

    Article  CAS  Google Scholar 

  20. S. Jaballah, M. Benamara, H. Dahman, D. Lahem, M. Debliquy, L. El Mir, J. Mater. Sci. Mater. Electron. 31, 8230–8239 (2020)

    Article  CAS  Google Scholar 

  21. M.R. Modaberi, R. Rooydell, S. Brahma, A.A. Akande, B.W. Mwakikunga, C.-P. Liu, Sensors Actuators B Chem. 273, 1278–1290 (2018)

    Article  CAS  Google Scholar 

  22. P.M. Shirage, A.K. Rana, Y. Kumar, S. Sen, S.G. Leonardi, G. Neri, RSC Adv. 6, 82733–82742 (2016)

    Article  CAS  Google Scholar 

  23. V.S. Bhati, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Sensors Actuators B Chem. 255, 588–597 (2018)

    Article  CAS  Google Scholar 

  24. D. Zhang, C. Jiang, Y. Yao, D. Wang, Y. Zhang, Sensors Actuators B Chem. 253, 1120–1128 (2017)

    Article  CAS  Google Scholar 

  25. D. Zhang, J. Wu, P. Li, Y. Cao, J. Mater. Chem. A 5(39), 20666–20677 (2017)

    Article  CAS  Google Scholar 

  26. D. Zhang, H. Chang, Y. Zhang, J. Mater. Sci. Mater. Electron. 28(2), 1667–1673 (2017)

    Article  Google Scholar 

  27. D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Nano Energy 65, 103974 (2019)

    Article  CAS  Google Scholar 

  28. S. Ozturk, N. Kilinc, Z.Z. Ozturk, J. Alloys Compd. 581, 196–201 (2013)

    Article  CAS  Google Scholar 

  29. T. Zou, R. Zhao, Z. Wang, R. Zhao, Z. Wang, Y. Yang, Y. Wang, Syst. Nanostruct. 103, 143–150 (2018)

    CAS  Google Scholar 

  30. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Sensors Actuators B Chem. 239, 1185–1193 (2017)

    Article  CAS  Google Scholar 

  31. A. Tamvakos, K. Korir, D. Tamvakos, D. Calestani, G. Cicero, D. Pullini, ACS Sensors 1(4), 406–412 (2016)

    Article  CAS  Google Scholar 

  32. B. Shouli, C. Liangyuan, H. Jingwei, L. Dianqing, L. Ruixian, C. Aifan, C.C. Liu, Sensors Actuators B Chem. 159(1), 97–102 (2011)

    Article  Google Scholar 

  33. X. Li, J. Wang, D. Xie, J. Xu, Y. Xia, L. Xiang, Mater. Lett. 206, 18–21 (2017)

    Article  CAS  Google Scholar 

  34. Y. Yan, Y. Zhang, G. Meng, L. Zhang, J. Cryst. Growth. 294(2), 184–190 (2006)

    Article  CAS  Google Scholar 

  35. Y. Zhao, C. Li, M. Chen, X. Yu, Y. Chang, A. Chen, Z. Tang, Phys. Lett. A 380(47), 3993–3997 (2016)

    Article  CAS  Google Scholar 

  36. C. Belkhaoui, N. Mzabi, H. Smaoui, Mater. Res. Bull. 111, 70–79 (2019)

    Article  CAS  Google Scholar 

  37. M.A. Chougule, S. Sen, V.B. Patil, Ceram. Int. 38(4), 2685–2692 (2012)

    Article  CAS  Google Scholar 

  38. A.T. Mane, S.T. Navale, V.B. Patil, Org. Electron. 19, 15–25 (2015)

    Article  CAS  Google Scholar 

  39. A.A. Mane, A.V. Moholkar, Appl. Surf. Sci. 405, 427–440 (2017)

    Article  CAS  Google Scholar 

  40. W.G. Chen, T.Y. Gao, H.L. Gan, L.N. Xu, L.F. Jin, Mater. Technol. 30(6), 356–361 (2015)

    Article  CAS  Google Scholar 

  41. H. Benelmadjat, N. Touka, B. Harieche, B. Boudine, O. Halimi, M. Sebais, Opt. Mater. 32(7), 764–767 (2010)

    Article  CAS  Google Scholar 

  42. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13(1), 251–256 (2011)

    Article  Google Scholar 

  43. R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Chem. Phys. Lett. 689, 92–99 (2017)

    Article  CAS  Google Scholar 

  44. N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L.J. Kennedy, G. Sekaran, J.J. Vijaya, Powder Technol. 211(2–3), 250–255 (2011)

    Article  CAS  Google Scholar 

  45. A. Dhanalakshmi, A. Palanimurugan, B. Natarajan, Carbohydr. Polym. 168, 191–200 (2017)

    Article  CAS  Google Scholar 

  46. K. Khun, Z.H. Ibupoto, M.S. Alsalhi, M. Atif, A.A. Ansari, M. Willander, Materials 6(10), 4361–4374 (2013)

    Article  Google Scholar 

  47. S. Husain, F. Rahman, N. Ali, P. Alvi, J. Optoelectron. Eng. 1(1), 28–32 (2013)

    Google Scholar 

  48. M.P. Dasari, U. Godavarti, V. Mote, Appl. Ceram. 12(2), 100–110 (2018)

    Article  CAS  Google Scholar 

  49. R. Jeyachitra, N. Sriharan, V. Senthilnathan, T.S. Senthil, J. Adv. Chem. 12, 4097–4107 (2013)

    Article  Google Scholar 

  50. K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 19–24 (2014)

    Article  CAS  Google Scholar 

  51. N.B. Patil, A.R. Nimbalkar, M.G. Patil, Mater. Sci. Eng. B. 227, 53–60 (2018)

    Article  CAS  Google Scholar 

  52. M.S. Abdel-Wahab, A. Jilani, I.S. Yahia, A.A. Al-Ghamdi, Superlattice Microst. 94, 108–118 (2016)

    Article  CAS  Google Scholar 

  53. R. Elilarassi, G. Chandrasekaran, Mater. Chem. Phys. 123(2–3), 450–455 (2010)

    Article  CAS  Google Scholar 

  54. R.S. Kumar, S.H.S. Dananjaya, M. De Zoysa, M. Yang, RSC adv. 6, 108468–108476 (2016)

    Article  CAS  Google Scholar 

  55. D.R. Kumar, D. Manoj, J. Santhanalakshmi, RSC Adv. 4, 8943–8952 (2014)

    Article  CAS  Google Scholar 

  56. S.B. Jagadale, V.L. Patil, S.S. Mali, S.A. Vanalakar, C.K. Hong, P.S. Patil, H.P. Deshmukh, J. Alloys Compd. 766, 941–951 (2018)

    Article  CAS  Google Scholar 

  57. P. Rai, Y.S. Kim, H.M. Song, M.K. Song, Y.T. Yu, Sensors Actuators B Chem. 165(1), 133–142 (2012)

    Article  CAS  Google Scholar 

  58. V.V. Ganbavle, S.I. Inamdar, G.L. Agawane, J.H. Kim, K.Y. Rajpure, Chem. Eng. J. 286, 36–47 (2016)

    Article  CAS  Google Scholar 

  59. X. Wang, F. Sun, Y. Duan, Z. Yin, W. Luo, Y. Huang, J. Chen, J. Mater. Chem. C. 3(43), 11397–11405 (2015)

    Article  CAS  Google Scholar 

  60. S.K. Shaikh, V.V. Ganbavle, S.I. Inamdar, K.Y. Rajpure, RSC Adv. 6, 25641–25650 (2016)

    Article  CAS  Google Scholar 

  61. K.V. Gurav, M.G. Gang, S.W. Shin, U.M. Patil, P.R. Deshmukh, G.L. Agawane, J.H. Kim, Sensors Actuators B Chem. 190, 439–445 (2014)

    Article  CAS  Google Scholar 

  62. P.S. Shewale, G.L. Agawane, S.W. Shin, A.V. Moholkar, J. Lee, J.H. Kim, M.D. Uplane, Sensors Actuators B Chem. 177, 695–702 (2013)

    Article  CAS  Google Scholar 

  63. J. Kim, W. Kim, K. Yong, J. Phys. Chem. C 116(29), 15682–15691 (2012)

    Article  CAS  Google Scholar 

  64. W. Zhang, D. Zhang, Y. Zhang, J. Mater. Sci. Mater. Electron. 31, 6706–6715 (2020)

    Article  CAS  Google Scholar 

  65. Z. Yang, D. Zhang, H. Chen, Sensors Actuators B Chem. 300(1–10), 127037 (2019)

    Article  CAS  Google Scholar 

  66. V. Kobrinsky, E. Fradkin, V. Lumelsky, A. Rothschild, Y. Komem, Y. Lifshitz, Sensors Actuators B Chem. 148(2), 379–387 (2010)

    Article  CAS  Google Scholar 

  67. R.L. Fomekong, H.T. Kamta, J.N. Lambi, D. Lahem, P. Eloy, M. Debliquy, A. Delcorte, J. Alloys Compd. 731, 1188–1196 (2018)

    Article  Google Scholar 

  68. M. Benamara, J. Massoudi, H. Dahman, E. Dhahri, L. El Mir, A. Ly, D. Lahem, J. Mater. Sci. Mater. 31, 14249–14260 (2020)

    Article  CAS  Google Scholar 

  69. C. Zou, F. Liang, S. Xue, Appl. Surf. Sci. 353, 1061–1069 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors (VSK) wish to express thanks to Dr. V. D. Barhate and Dr. S. K. Patil, Changu Kana Thakur Arts, Commerce and Science College, New Panvel, Mumbai for continuous encouragement and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Kamble or S. T. Salunkhe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, V.S., Navale, Y.H., Patil, V.B. et al. Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures. J Mater Sci: Mater Electron 32, 2219–2233 (2021). https://doi.org/10.1007/s10854-020-04987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04987-z

Navigation