Skip to main content
Log in

Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of magnesium doped zinc oxide nanostructures has been carried out by vapor transport method and characterization of the samples have been performed regarding methane (CH4) gas sensing in addition to their structural, morphological, chemical composition and optical properties. The un-doped and magnesium doped zinc oxide nanostructures were synthesized on silicon substrates at 900 °C through vapor liquid solid mechanism. Powder X-ray diffraction study confirmed the growth of material exhibiting crystalline wurtzite (hexagonal) structure. Scanning electron microscopy revealed that morphology of grown material is in the form of nanorods and nanobelts with average diameter and thickness of 12.66 ± 3.72 µm and 1.88 ± 0.70 µm, respectively. Energy dispersive X-ray analysis was used to examine the stoichiometry of the samples. Optical characterizations were carried out by photoluminescence, diffused reflectance spectroscopy, voltage dependent photo-current response and Time dependent photocurrent response. A significant change in energy bandgap has been observed after Mg incorporation in ZnO. For doped ZnO samples, the observed value of band gap is 3.32 eV which is higher than that for undoped ZnO (3.18 eV).The nanostructures were tested for UV and gas sensing properties based on the change in resistance in UV light when exposed to CH4 gas. The gas sensing response was recorded for temperature ranging from 50 to 200 °C for 400 ppm concentration of methane gas. The sensing response of Mg-doped ZnO nanobelts was found as high as 54%. The Mg-doped ZnO nanobelts showed significant, stable and enhanced sensing properties (54%) towards 400 ppm of CH4 gas at optimal temperature of 200 °C. The observations revealed that Mg doping in ZnO nanostructures would help to improve the CH4 and UV sensing of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Qi et al., Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137(2), 649–655 (2009)

    Article  CAS  Google Scholar 

  2. P. Ivanov et al., Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B 99(2), 201–206 (2004)

    Article  CAS  Google Scholar 

  3. R. Vander Wal et al., Metal-oxide nanostructure and gas-sensing performance. Sens. Actuators B 138(1), 113–119 (2009)

    Article  CAS  Google Scholar 

  4. F. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)

    Article  CAS  Google Scholar 

  5. X. Zhou et al., Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens. Actuators A 135(1), 209–214 (2007)

    Article  CAS  Google Scholar 

  6. H.-K. Hong et al., Portable electronic nose system with gas sensor array and artificial neural network. Sens. Actuators B 66(1), 49–52 (2000)

    Article  CAS  Google Scholar 

  7. M. Madkour, Y.K. Abdel-Monem, F. Al, Sagheer, Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res. 55(50), 12733–12741 (2016)

    Article  CAS  Google Scholar 

  8. A. Gedanken, Y. Mastai, Sonochemistry and other novel methods developed for the synthesis of nanoparticles. Chem. Nanomater. 10, 113–169 (2005)

    Article  Google Scholar 

  9. S.T. Tan et al., Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 98(1), 013505 (2005)

    Article  CAS  Google Scholar 

  10. S.N. Das et al., ZnO single nanowire-based UV detectors. Appl. Phys. Lett. 97(2), 022103 (2010)

    Article  CAS  Google Scholar 

  11. B. Mondal et al., Zinc oxide nano-platelets for effective methane gas-sensing applications. Chin. J. Phys. 51(5), 994–1005 (2013)

    CAS  Google Scholar 

  12. M. Amin et al., Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts. CrystEngComm 16(27), 6080–6088 (2014)

    Article  CAS  Google Scholar 

  13. L.-J. Bie et al., Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens. Actuators B 126(2), 604–608 (2007)

    Article  CAS  Google Scholar 

  14. M. Kumar et al., Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen. Sci. Rep. 7(1), 236 (2017)

    Article  CAS  Google Scholar 

  15. B. Lei et al., Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 79(3), 439–442 (2004)

    Article  CAS  Google Scholar 

  16. Y.K. Abdel-Monem, S.M. Emam, H.M. Okda, Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci. 28(3), 2923–2934 (2017)

    CAS  Google Scholar 

  17. R. Maity et al., Synthesis and characterization of ZnO nano/microfibers thin films by catalyst free solution route. Phys. E 25(4), 605–612 (2005)

    Article  CAS  Google Scholar 

  18. H.M. Xiong et al., Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew. Chem. Int. Ed. 48(15), 2727–2731 (2009)

    Article  CAS  Google Scholar 

  19. J. Singh et al., Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires. CrystEngComm 14(18), 5898–5904 (2012)

    Article  CAS  Google Scholar 

  20. N. Wang, Y. Cai, R. Zhang, Growth of nanowires. Mater. Sci. Eng. 60(1), 1–51 (2008)

    CAS  Google Scholar 

  21. H.J. Fan et al., Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotechnology 17(11), S231 (2006)

    Article  CAS  Google Scholar 

  22. M. Hafeez et al., Catalyst solubility and self-doping in ZnS nanostructures. J. Appl. Phys. 111(2), 024313 (2012)

    Article  CAS  Google Scholar 

  23. J.-H. Park et al., Ultrawide ZnO nanosheets. J. Mater. Chem. 14(1), 35–36 (2004)

    Article  CAS  Google Scholar 

  24. Z.L. Wang, X. Kong, J. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 91(18), 185502 (2003)

    Article  CAS  Google Scholar 

  25. H. Pan et al., Electroluminescence and field emission of Mg-doped ZnO tetrapods. Nanotechnology 17(20), 5096 (2006)

    Article  CAS  Google Scholar 

  26. Y. Zhang et al., Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties. Nanotechnology 17(8), 1916 (2006)

    Article  CAS  Google Scholar 

  27. Y.K. Abdel-Monem, Efficient nanophotocatalyt of hydrothermally synthesized anatase TiO2 nanoparticles from its analogue metal coordinated precursor. J. Mater. Sci. 27(6), 5723–5728 (2016)

    CAS  Google Scholar 

  28. A.K. Zak et al., Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder Technol. 24(3), 618–624 (2013)

    Article  CAS  Google Scholar 

  29. M. Nagasawa, S. Shionoya, Second class exciton structure in stannic oxide. J. Phys. Soc. Jpn. 30(1), 158–167 (1971)

    Article  CAS  Google Scholar 

  30. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93(3), 632 (1954)

    Article  CAS  Google Scholar 

  31. Q. Dong-Jiang et al., Characterizations of cubic ZnMgO films grown on Si (111) at low substrate temperature. Chin. Phys. Lett. 20(4), 582 (2003)

    Article  Google Scholar 

  32. K.-S. Ahn et al., Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91(23), 231909 (2007)

    Article  CAS  Google Scholar 

  33. J.L. Musfeldt, Handbook of applied solid state spectroscopy edited by DR Vij (Kurukshetra University, India). J. Am. Chem. Soc. 129(10), 3028–3028

  34. H.-C. Hsu et al., Band gap engineering and stimulated emission of ZnMgO nanowires. Appl. Phys. Lett. 89(1), 013101 (2006)

    Article  CAS  Google Scholar 

  35. U. Manzoor, D.K. Kim, Synthesis and enhancement of ultraviolet emission by post-thermal treatment of unique zinc oxide comb-shaped dendritic nanostructures. Script. Mater. 54(5), 807–811 (2006)

    Article  CAS  Google Scholar 

  36. Y. Zhang et al., Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113(9), 3430–3435 (2009)

    Article  CAS  Google Scholar 

  37. A.A. Ibrahim et al., Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. Talanta 93, 257–263 (2012)

    Article  CAS  Google Scholar 

  38. N. Han et al., Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sens. Actuators B 147(2), 525–530 (2010)

    Article  CAS  Google Scholar 

  39. G. Dar et al., Ce-doped ZnO nanorods for the detection of hazardous chemical. Sens. Actuators B 173, 72–78 (2012)

    Article  CAS  Google Scholar 

  40. Y. Wang et al., Mesostructured SnO2 as sensing material for gas sensors. Solid State Elect. 48(5), 627–632 (2004)

    Article  CAS  Google Scholar 

  41. W.-F. Chung et al., Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors. Appl. Phys. Lett. 98(15), 152109 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Higher education commission (HEC) Pakistan is acknowledged for financial support through Project No. 9294/NRPU/R&D/HEC/2017. The authors would also be thankful to COMSATS University Islamabad for necessary funds through project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazar Abbas Shah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GuL, M., Amin, M., Abbas, M. et al. Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection. J Mater Sci: Mater Electron 30, 5257–5265 (2019). https://doi.org/10.1007/s10854-019-00825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00825-z

Navigation