Skip to main content
Log in

High-performance NO2 gas sensor based on bimetallic oxide CuWO4 decorated with reduced graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a high-performance NO2 gas sensor based on CuWO4 nanoparticles decorated with reduced graphene oxide (rGO) nanosheets was successfully prepared by hydrothermal method without adding any surfactant. The products were synthetically characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The performance of the NO2 gas sensor was investigated at room temperature. The results show that the CuWO4/rGO composite sensor has higher response to NO2 gas, shorter response/recovery time, and better repeatability than the other two single-component sensors. The enhanced NO2-sensing properties of the CuWO4/rGO composite sensor were ascribed to the synergistic effect of CuWO4 and rGO. The CuWO4/rGO composite sensor is highly suitable for NO2 gas sensing in applications of environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.S. Shendage, V.L. Patil, S.P. Patil, S.A. Vanalakar, J.L. Bhosale, J.H. Kim, P.S. Patil, NO2 sensing properties of porous fibrous reticulated WO3 thin films. J. Anal. Appl. Pyrolysis 125, 9–16 (2017)

    CAS  Google Scholar 

  2. G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B 162, 82–88 (2012)

    CAS  Google Scholar 

  3. S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sen. Actuators B 202, 272–278 (2014)

    CAS  Google Scholar 

  4. Z. Yang, D. Zhang, H. Chen, MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sen. Actuators B 300, 127037 (2019)

    CAS  Google Scholar 

  5. M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151, 362–367 (2008)

    CAS  Google Scholar 

  6. S. Zhao, Y. Shen, P. Zhou, J. Zhang, W. Zhang, X. Chen, D. Wei, P. Fang, Y. Shen, Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating. Ceram. Int. 44, 753–759 (2018)

    CAS  Google Scholar 

  7. X.X. Chen, Y.B. Shen, P.F. Zhou, X.X. Zhong, G.D. Li, C. Han, D.Z. Wei, S. Li, Bimetallic Au/Pd nanoparticles decorated ZnO nanowires for NO2 detection. Sens. Actuators B 289, 160–168 (2019)

    CAS  Google Scholar 

  8. Y.S. Liu, X.P. Liu, Y.B. Wang, R. Wang, T. Zhang, Metal-organic-framework-derived In2O3 microcolumnar structures embedded with Pt nanoparticles for NO2 detection near room temperature. Ceram. Int. 45, 9820–9828 (2019)

    CAS  Google Scholar 

  9. D.Z. Zhang, D. Wu, Y.H. Cao, X.Q. Zong, Z.M. Yang, Construction of Co3O4 nanorods/In2O3 nanocubes heterojunctions for efficient sensing of NO2 gas at low temperature. J. Mater. Sci. Mater. Electron. 29, 19558–19566 (2018)

    CAS  Google Scholar 

  10. L. Yuan, M. Hu, Y. Wei, W. Ma, Enhanced NO2 sensing characteristics of Au modified porous silicon/thorn-sphere-like tungsten oxide composites. Appl. Surf. Sci. 389, 824–834 (2016)

    CAS  Google Scholar 

  11. S.W. Choi, J. Kim, Y.T. Byun, Highly sensitive and selective NO2 detection by Pt nanoparticles-decorated single-walled carbon nanotubes and the underlying sensing mechanism. Sens. Actuator B 238, 1032–1042 (2017)

    CAS  Google Scholar 

  12. D. Zhang, X. Zong, Z. Wu, Y. Zhang, Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity sensing applications. ACS Appl. Mater. Interfaces 10, 32631–32639 (2018)

    CAS  Google Scholar 

  13. D.Z. Zhang, Z.L. Wu, X.Q. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sen. Actuators B 274, 575–586 (2018)

    CAS  Google Scholar 

  14. Y.H. Ma, Y. Lu, H.T. Gou, W.X. Zhang, S.H. Yan, X.L. Xu, Octahedral NiFe2O4 for high-performance gas sensor with low working temperature. Ceram. Int. 44, 2620–2625 (2018)

    CAS  Google Scholar 

  15. S.L. Peng, Z.H. Wang, R. Liu, B. Jian, J.T. Wu, Controlled oxygen vacancies of ZnFe2O4 with superior gas sensing properties prepared via a facile one-step self-catalyzed treatment. Sen. Actuators B 288, 649–655 (2019)

    CAS  Google Scholar 

  16. Y. Xiong, Z.Y. Zhu, D.G. Ding, W.B. Lu, Q.Z. Xue, Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Appl. Surf. Sci. 443, 114–121 (2018)

    CAS  Google Scholar 

  17. A.C. Catto, T. Fiorido, E.L.S. Souzac, W. Avansi Jr., J. Andres, K. Aguir, E. Longo, L.S. Cavalcante, L.F. Silvad, Improving the ozone gas-sensing properties of CuWO4 nanoparticles. J. Alloys Compd. 748, 411–417 (2018)

    CAS  Google Scholar 

  18. D. Zhang, M. Wang, W. Zhang, Q. Li, Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. Sens. Actuators B 304, 127234 (2020)

    CAS  Google Scholar 

  19. C.E. Simion, S. Somacescu, V.S. Teodorescu, P. Osiceanu, A. Stanoiu, H2S sensing mechanism of SnO2-CuWO4 operated under pulsed temperature. Sens. Actuators B 259, 258–268 (2018)

    CAS  Google Scholar 

  20. J. Jayvant, D. Nadargi, I. Mulla, S.S. Suryavanshi, Spinel MgFe2O4 thick films: a colloidal approach for developing gas sensors. Mater. Lett. 213, 27–30 (2018)

    Google Scholar 

  21. R. Dilip, R. Jayaprakash, Synthesis and characterization of BaFe2O4 nano-ferrites for gas sensor applications. Energy Ecol. Environ. 3, 237–241 (2018)

    Google Scholar 

  22. D.Z. Zhang, C.X. Jiang, J.J. Liu, Y.H. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators B 247, 875–882 (2017)

    CAS  Google Scholar 

  23. D. Zhang, J. Liu, B. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B 240(2017), 55–65 (2017)

    CAS  Google Scholar 

  24. T.D. Chen, W.H. Yan, J.G. Xu, J.H. Li, G.P. Zhang, D. Ho, Highly sensitive and selective NO2 sensor based on 3D MoS2/rGO composites prepared by a low temperature self-assembly method. J. Alloys Compd. 739, 541–551 (2019)

    Google Scholar 

  25. D.Z. Zhang, Z.L. Wu, X.Q. Zong, Flexible and highly sensitive H2S gas sensor based on in situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 289, 32–41 (2019)

    CAS  Google Scholar 

  26. J. Hu, C. Zou, Y. Su, M. Li, N. Hu, H. Ni, Z. Yang, Y. Zhang, Enhanced NO2 sensing performance of reduced graphene oxide by in situ anchoring carbon dots. J. Mater. Chem. C 5, 6862–6871 (2017)

    CAS  Google Scholar 

  27. Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B 242, 269–279 (2017)

    CAS  Google Scholar 

  28. D. Ziegler, A. Marchisio, P. Palmero, D. Pugliese, V. Cauda, J.M. Tulliani, ZnO thick films for NO2 detection: effect of different nanostructures on the sensors' performances. J. Mater. Sci. Mater. Electron. 30, 20958–20969 (2019)

    CAS  Google Scholar 

  29. S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2, 5573–5579 (2014)

    CAS  Google Scholar 

  30. A.E.B. Lima, M.J.S. Costa, R.S. Santos, N.C. Batista, L.S. Cavalcante, E. Longo, G.E. Luz, Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim. Acta 256, 139–145 (2017)

    CAS  Google Scholar 

  31. Z. Barzgari, S.Z. Askari, A. Ghazizadeh, Fabrication of nanostructured CuWO4 for photocatalytic degradation of organic pollutants in aqueous solution. J. Mater. Sci. Mater. Electron. 28, 3293–3298 (2017)

    CAS  Google Scholar 

  32. E.L.S. Souza, J.C. Sczancoski, I.C. Nogueira, M.A.P. Almeida, M.O. Orlandi, M.S. Li, R.A.S. Luz, M.G.R. Filho, E. Longo, L.S. Cavalcante, Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals. Ultrason. Sonochem. 38, 256–270 (2017)

    CAS  Google Scholar 

  33. D.Z. Zhang, H.Y. Chang, P. Li, R.H. Liu, Q.Z. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B 225, 233–240 (2016)

    CAS  Google Scholar 

  34. Y.W. Li, N. Luo, G. Sun, B. Zhang, L. Lin, H.H. Jin, Y. Wang, H. Bala, J.L. Cao, Z.Y. Zhang, In situ decoration of Zn2SnO4 nanoparticles on reduced graphene oxide for high performance ethanol sensor. Ceram. Int. 44, 6836–6842 (2018)

    CAS  Google Scholar 

  35. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D. El-Said Bakeer, Synthesis, characterization and magnetic properties of pure and EDTA-capped NiO nano-sized particles. J. Nanomater. 2017, 7460323 (2017)

    Google Scholar 

  36. Z.Y. Wang, A. Sackmann, S. Gao, U. Weimar, G.Y. Lu, S. Liu, T. Zhang, N. Barsan, Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn2SnO4 nanoparticles immobilized on reduced graphene oxide under humidity conditions. Sens. Actuators B 285, 590–600 (2019)

    CAS  Google Scholar 

  37. K. Aneesh, C.S.R. Vusa, S. Berchmans, Enhanced peroxidase-like activity of CuWO4 nanoparticles for the detection of NADH and hydrogen peroxide. Sens. Actuators B 253, 723–730 (2017)

    CAS  Google Scholar 

  38. S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)

    CAS  Google Scholar 

  39. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)

    CAS  Google Scholar 

  40. H. Zhang, L. Yu, Q. Li, Y. Du, S.C. Ruan, Reduced graphene oxide/alpha-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017)

    CAS  Google Scholar 

  41. B. Behera, S. Chandra, Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application. Mater. Sci. Semicond. Process. 86, 79–84 (2018)

    CAS  Google Scholar 

  42. Y.H. Navale, S.T. Navale, M. Galluzzi, F.J. Stadler, A.K. Debnath, N.S. Ramgir, S.C. Gadkari, S.K. Gupta, D.K. Aswal, V.B. Patil, Rapid synthesis strategy of CuO nanocubes for sensitive and selective detection of NO2. J. Alloys Compd. 708, 456–463 (2017)

    CAS  Google Scholar 

  43. B. Zhang, G. Liu, M. Cheng, Y. Gao, L. Zhao, S. Li, F. Liu, X. Yan, T. Zhang, P. Sun, G. Lu, The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens. Actuators B 261, 252–263 (2018)

    CAS  Google Scholar 

  44. B. Zhang, M. Cheng, G.N. Liu, Y. Gao, L.J. Zhao, S. Li, Y.P. Wang, F.M. Liu, X.S. Liang, T. Zhang, G.Y. Lu, Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sens. Actuators B 263, 387–399 (2018)

    CAS  Google Scholar 

  45. A.S.M.I. Uddin, D.T. Phan, G.S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B 207, 362–369 (2015)

    Google Scholar 

  46. Z. Xue, Z. Cheng, J. Xu, Q. Xiang, X. Wang, J. Xu, Controllable evolution of dual defects Zni and Vo associates-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection. ACS Appl. Mater. Interfaces 9, 41559–41567 (2017)

    CAS  Google Scholar 

  47. D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3302 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51777215), the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education (KFZ1801), the Fundamental Research Funds for the Central Universities of China (18CX07010A), and the Open Fund of Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, State Oceanic Administration of China (201801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongzhi Zhang or Yong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, D. & Zhang, Y. High-performance NO2 gas sensor based on bimetallic oxide CuWO4 decorated with reduced graphene oxide. J Mater Sci: Mater Electron 31, 6706–6715 (2020). https://doi.org/10.1007/s10854-020-03227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03227-8

Navigation