Skip to main content
Log in

The effect of different doping elements on the CO gas sensing properties of ZnO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect on copper and manganese doping in the CO gas sensing properties of nanostructure ZnO thin films was investigated. Undoped, copper and manganese doped ZnO nanostructures (ZnO, CZO and MZO) were succesfully synthesized by a simple chemical synthesis method using parallel reaction station. The structural, morphological and compositional properties of the nanostructures were investigated using X-ray diffractometer, Scanning Electron Microscope (SEM) and energy dispersive X-ray analysis, respectively. Structural analysis revealed that all the film were polycrystalline in nature with hexagonal wurtzite crystal structure. SEM images showed the changes of morphology were achieved in the nanostructures depending on doping material. The CO sensing properties of the prepared nanostructures at different temperatures and different gas concentrations were studied. The CZO nanostructure displayed a exhibits superior sensing performances for CO gas at low operating temperature (95 °C). Moreover, the Cu-doped ZnO nanostructure exhibits enhanced CO sensing properties such as higher response, less response time, better selectivity and repeatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Liu, B. Wang, T. Liu, P. Sun, Y. Gao, F. Liu, G. Lu, Sens. Actuators B 235, 294 (2016)

    Article  Google Scholar 

  2. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators B 115, 247 (2006)

    Article  Google Scholar 

  3. O. Lupan, T. Pauporte, L. Chow, Turk J. Phys 38, 399 (2014)

    Article  Google Scholar 

  4. A.J. Anderson, J.M. Nicholson, O. Bakare, R.J. Butcher, K.R. Scott, J. Comb. Chem. 6, 950 (2004)

    Article  Google Scholar 

  5. D.S. Dhawale, C.D. Lokhande, J. Alloys Compd. 509, 10092 (2011)

    Article  Google Scholar 

  6. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Phys. B 407, 1223 (2012)

    Article  Google Scholar 

  7. S.V. Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)

    Article  Google Scholar 

  8. A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, Sens. Actuators B 93, 509 (2003)

    Article  Google Scholar 

  9. D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu, V. Tiron, A. Manole, C. Adomnitei, Ceram. Int. 42, 7353 (2016)

    Article  Google Scholar 

  10. K.G. Girija, K. Somasundaram, A. Topkar, R.K. Vatsa, J. Alloys Compd. 684, 15 (2016)

    Article  Google Scholar 

  11. J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, Y. Zhang, J. Mater. Chem. 22, 20038 (2012)

    Article  Google Scholar 

  12. Y. Nakamura, H. Yoshioka, M. Miyayama, H. Yanagida, T. Tsurutani, Y. Nakamura, J. Electrochem. Soc. 137, 940 (1990)

    Article  Google Scholar 

  13. J.D. Choi, G.M. Choi, Sens. Actuators B 69, 120 (2000)

    Article  Google Scholar 

  14. A. Mirzaei, S. Park, G.-J. Sun, H. Kheel, C. Lee, J. Hazard. Mater. 305, 130 (2016)

    Article  Google Scholar 

  15. V. Kotlyar, L. Shahar, J.-P. Lellouche, Mol. Divers. 10, 255 (2006)

    Article  Google Scholar 

  16. I. Karaduman, E. Er, H. Çelikkan,, S. Acar, Sens. Actuators B 221, 1188 (2015)

    Article  Google Scholar 

  17. M. Castro, B. Kumar, J.F. Feller, Z. Haddi, A. Amari, B. Bouchikhi, Sens. Actuators B 159, 213 (2011)

    Article  Google Scholar 

  18. H. Cheng, J. Chen, S. Chen, D. Wu, D. Liu, X. Ye, Food Res. Int. 72, 8 (2015)

    Article  Google Scholar 

  19. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Appl. Phys. Lett. 90, 142502 (2007)

    Article  Google Scholar 

  20. E. Amoupour, A. Abdolahzadeh Ziabari, H. Andarva, F.E. Ghodsi, Superlattices Microstruct. 65, 332 (2014)

    Article  Google Scholar 

  21. A.E. Jimenez-Gonzalez, J. Solid State Chem. 128, 176 (1997)

    Article  Google Scholar 

  22. https://www.webelements.com/periodicity/ionic_radius_2_tet/

  23. R.D. Shannon, Acta Cryst. 32, 751 (1976)

    Article  Google Scholar 

  24. R. Yoo, S. Cho, M.J. Song, W. Lee, Sens. Actuators B 221, 217 (2015)

    Article  Google Scholar 

  25. J. Panda, I. Sasmal, T.K. Nath, AIP Adv. 6, 035118 (2016)

    Article  Google Scholar 

  26. J. Yin, F. Gao, C. Wei, Q. Lu, Sci. Rep. 4, 3736 (2016)

    Article  Google Scholar 

  27. M. Hjiri, R. Dhahri, L. El Mir, S.G. Leonardi, G. Neri, Mater. Sci. Semicond. Process. 27, 319 (2014)

    Article  Google Scholar 

  28. H. Chen, S.Y. Ma, H.Y. Jiao, G.J. Yang, X.L. Xu, T.T. Wang, X.H. Jiang, Z.Y. Zhang, J. Alloy. Compd. 687, 342 (2016)

  29. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Sensors 12, 2610 (2012)

    Article  Google Scholar 

  30. H.Y. Chen, S.P. Lau, L. Chen, J. Lin, C.H.A. Huan, K.L. Tan, J.S. Pan, Appl. Surf. Sci. 152, 193 (1999)

    Article  Google Scholar 

  31. T.S. Tee, T.C. Hui, C.W. Yi, Y.C. Chin, A.A. Umar, G.R. Titian, L.H. Beng, L.K. Sing, M. Yahaya, M.M. Salleh, Sens. Actuators B 227, 304–312 (2016)

    Article  Google Scholar 

  32. S.U. Mutkule, S.T. Navale, V.V. Jadhav, S.B. Ambade, Mu. Naushad, A.D. Sagar, V.B. Patil, F.J. Stadler, R.S. Mane, J. Alloy. Compd. 695, 2008 (2017)

    Article  Google Scholar 

  33. A.S.R. Murthy, D. Pathak, G. Sharma, K.I. Gnanasekar, V. Jayaraman, A.M. Umarji, T. Gnanasekaran, Anal. Chim. Acta 892, 175 (2015)

    Article  Google Scholar 

  34. R.M. Schnabel, M.L.L. Boumans, A. Smolinska, E.E. Stobberingh, R. Kaufmann, P.M.H.J. Roekaerts, D.C.J.J. Bergmans, Respir. Med. 109, 1454–1459 (2015)

    Article  Google Scholar 

  35. P.-G. Su, T.-Y. Chuang, Sens. Actuators A 263, 1, (2017)

    Article  Google Scholar 

  36. M. Hjiri, L. El Mir, S. Gianluca Leonardi, Chemosensors 2, 121, (2014)

    Article  Google Scholar 

  37. D. Li, Y. Zhang, J. Xu, H. Jin, D. Jin, B. Hong, X. Peng, P. Wang, H. Ge, X. Wang, Phys. E 84, 395 (2016)

    Article  Google Scholar 

  38. L. Qiao, Y. Bing, Y. Wang, S. Yu, Z. Liang, Y. Zeng, Sens. Actuators B 241, 1121 (2017)

    Article  Google Scholar 

  39. C.-M. Chang, M.-H. Hona, I.-C. Leu, RSC Adv. 2, 2469–2475 (2012)

    Article  Google Scholar 

  40. J.H. Yu, G.M. Choi, J. Electroceram. 8, 249 (2002)

    Article  Google Scholar 

  41. G. Zhang, M. Liu, Sens. Actuators B 69, 144 (2000)

    Article  Google Scholar 

  42. J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, J. Alloys Compd. 575, 115 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support given by Gazi University Scientific Research Foundation, Project No: 05/2016-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karaduman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaduman, I., Yıldırım, M.A., Yıldırım, S.T. et al. The effect of different doping elements on the CO gas sensing properties of ZnO nanostructures. J Mater Sci: Mater Electron 28, 18154–18163 (2017). https://doi.org/10.1007/s10854-017-7761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7761-1

Navigation