Skip to main content

Advertisement

Log in

The role of interface traps, series resistance and (Ni-doped PVA) interlayer effects on electrical characteristics in Al/p-Si (MS) structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main point of this article is to examine in detail the effects of interface/surface states (Nss), series resistance (Rs) and (Ni-doped PVA) polymer interlayer on current–voltage (I–V) and frequency dependent capacitance–voltage (C–V) properties at room temperature. Some main diode parameters such as reverse-saturation current (Is), ideality factor (n), barrier height (BH) (= ΦB(I–V)), Rs, and rectification ratio (RR = IF/IR) at ± 3 V were calculated from the linear part of LnI–V plot as 2.14 × 10−9 A, 1.606, 0.750 eV, 30.5 Ω, and 106, respectively. Energy dependent values of Nss were also extracted from the I–V data by considering voltage dependent ΒΗ and n they decrease from mid-gap of Si towards the bottom of valance band (Ev) almost as exponentially. The doping atoms (Na), Fermi energy level (EF), (ΦB(C–V)), and depletion layer width (WD) were also calculated from the reverse bias C−2–V curves as function of frequency. The achievement of obtained results that manufactured (Ni-PVA) interlayer provide better performance in respect of lower values of leakage current, Nss, Rs, and higher values of RR and shunt resistance. The dielectric value of (Ni-PVA) interlayer was found as 1.44 from the interlayer capacitance (Ci = ε′εoA/di) even at 20 kHz and this is higher than the dielectric value of SiO2 at 20 kHz. However, this value can be increased by increasing a dopant level of Ni until 5–7%. Therefore, this interlayer can be successfully use an alternative interface layer compared to traditional oxide interlayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.L. Sharma, Metal-semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  2. H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Sens. Actuators A 199, 194 (2013)

    Article  CAS  Google Scholar 

  3. J. Werner, H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)

    Article  CAS  Google Scholar 

  4. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  5. E. Özavcı, S. Demirezen, U. Aydemir, S. Altındal, Sens. Actuators A 194, 259 (2013)

    Article  Google Scholar 

  6. Ş. Altındal, J. Mater. Electron Dev. 1, 42 (2015)

    Google Scholar 

  7. R.T. Tung, J.P. Sullivan, F. Schrey, Mater. Sci. Eng. B 14, 266 (1992)

    Article  Google Scholar 

  8. W. Mönch, J. Vac. Sci. Technol. B 17, 1867 (1997)

    Article  Google Scholar 

  9. E.H. Nicollian, J.R. Brews, Mos (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

  10. S. Demirezen, A. Kaya, Ö. Vural, Altindal. Mater. Sci. Semicond. Process. 33, 140–148 (2015)

    Article  CAS  Google Scholar 

  11. S. Altındal Yerişkin, M. Balbaşı, İ. Orak, J. Mater. Sci. 28, 14040–14048 (2017)

    Google Scholar 

  12. M. Sharma, S.K. Tripathi, Appl. Phys. A 113, 491–499 (2013)

    Article  CAS  Google Scholar 

  13. C. Tozlu, A. Mutlu, Synth. Met. 211, 99–106 (2016)

    Article  CAS  Google Scholar 

  14. V.R. Reddy, Thin Solid Films 556, 300–306 (2014)

    Article  CAS  Google Scholar 

  15. M.S.P. Reddy, H.-S. Kang, J.-H. Lee, V.R. Reddy, J.-S. Jang, J. Appl. Polym. Sci. 131, 131 (2014). https://doi.org/10.1002/app.39773

    Article  CAS  Google Scholar 

  16. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altindal, J. Electron. Mater. 47, 6945–6953 (2018)

    Article  CAS  Google Scholar 

  17. E.A. Akhlaghi, Y. Badali, Ş. Altindal, Y. Azizian-Kalandaragh, Phys. B 546, 93–98 (2018)

    Article  CAS  Google Scholar 

  18. Y. Badali, A. Nikravan, Ş. Altindal, İ. Uslu, J. Electron. Mater. 47, 3510–3520 (2018)

    Article  CAS  Google Scholar 

  19. Serhat Orkun Tan, J. Polytech. 21(4), 977–989 (2018)

    Google Scholar 

  20. S.O. Tan, IEEE Trans. Electron Devices 64, 5121–5127 (2017)

    Article  CAS  Google Scholar 

  21. S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014)

    Article  Google Scholar 

  22. P.S. Ho, E.S. Yang, H.L. Evans, X. Wu, Phys. Rev. Lett. 60, 177 (1986)

    Article  Google Scholar 

  23. X. Wu, E.S. Yang, J. Appl. Phys. 65, 3560 (1989)

    Article  Google Scholar 

  24. P. Chattopadhyay, B. Raychaudhuri, Solid State Electron. 35, 875 (1992)

    Article  Google Scholar 

  25. Ç. Bilkan, A. Gümüş, Ş. Altındal, Mat Sci Semicond Process 39, 484 (2015)

    Article  CAS  Google Scholar 

  26. B. Bati, C. Nuhoğlu, M. Sağlam, E. Ayyildiz, A. Türüt, Phys. Scrıpta 61, 209 (2000)

    Article  CAS  Google Scholar 

  27. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Phys. Rev. Lett. 60, 53 (1988)

    Article  CAS  Google Scholar 

  28. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  CAS  Google Scholar 

  29. S. Alialy, A. Kaya, E. Marıl, S. Altındal, I. Uslu, Phil. Mag. 95, 1448 (2015)

    Article  CAS  Google Scholar 

  30. S. Altındal Yerişkin, J Mater Sci: Mater Electron 30, 17032 (2019)

  31. İ. Taşçıoğlu, S.O. Tan, F. Yakuphanoğlu, Ş. Altındal, J. Electron. Mater. 47, 6059–6066 (2018)

    Article  Google Scholar 

  32. S. Altındal Yerişkin, M. Balbaşı, S. Demirezen, Indian J. Phys. 91, 421–430 (2017)

    Article  Google Scholar 

  33. V. Rajagopal Reddy, V. Manjunath, V. Janardhanah, Y.-H. Kıl, C.-J. Choı, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-014-3177-3

    Article  Google Scholar 

  34. Y.S. Ocak, M. Kulakcı, T. Kılıcoğlu, R. Turan, K. Akkılıc, Synth. Met. 159, 1603 (2009)

    Article  CAS  Google Scholar 

  35. V.R. Reddy, V. Janardhanah, J.-W. Ju, H.-J. Yun, C.-J. Choi, Solid State Commun. 179, 34 (2014)

    Article  Google Scholar 

  36. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  CAS  Google Scholar 

  37. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  38. A.A.M. Farag, A. Ashery, E.M.A. Ahmed, M.A. Salem, J. Alloys Compd. 495, 116 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Amasya University BAP research Project with FMB-BAP 17-0292 number. The author wishes to express his gratitude to Prof. Dr. Şemsettin Altındal for his abundantly helpful support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Demirezen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirezen, S. The role of interface traps, series resistance and (Ni-doped PVA) interlayer effects on electrical characteristics in Al/p-Si (MS) structures. J Mater Sci: Mater Electron 30, 19854–19861 (2019). https://doi.org/10.1007/s10854-019-02352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02352-3

Navigation