Skip to main content
Log in

Effectuality of Barrier Height Inhomogeneity on the Current–Voltage–Temperature Characteristics of Metal Semiconductor Structures with CdZnO Interlayer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Current-conduction/transport mechanisms (CCMs or CTMs) through barrier and barrier height (BH) formation in the Al/(CdZnO)/p-Si/Al diodes, which were prepared by the sol–gel method, were examined in the range of 110–380 K. The decrease of zero-bias BH (ΦBo) and increase of ideality factor (n) with decreasing temperature were observed. The classic Richardson plot indicated two distinct linear regions that correspond to low and high temperature range (LTR and HTR), respectively. Contrary to this, the acquired Richardson constant value (A*) was much lower than its theoretical value (32 A cm−2 K−2). Such abnormal behavior of the ΦBo, n and A* was attributed to the evidence of the barrier inhomogeneities, especially at low temperature. Therefore, the ΦBo−n, ΦBo and (n−1 − n) versus q/2kT plots were sketched to acquire significant clues for the Gaussian distribution (GD) of the BHs at rectifier contact area with the mean BH (\( \bar{\Phi }_{\rm{Bo}} \)) and standard deviation (σso), which also have two linear parts with distinct slopes. \( \bar{\Phi } \) and σso were calculated from the slope and intercept of ΦBo versus q/2kT plot as 0.802 eV and 0.066 V for LTR, 1.043 eV and 0.106 V for HTR, respectively. The \( \bar{\Phi }_{\rm{Bo}} \) and A* were acquired by utilizing the σso values and using the Richardson plot as 0.626 eV and 14.26 A cm−2 K−2 for LTR and 1.021 eV and 32.53 A cm−2 K−2 for HTR, respectively. Thus, the IVT characteristics of the Al/(CdZnO)/p-Si/Al diodes at forward biases were successfully elucidated by the double-GD of BHs with mean BHs of 0.626 eV and 1.021 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Song, D.H. Kim, D. Kang, and T.Y. Seong, J. Electron. Mater. 45, 10 (2016).

    Google Scholar 

  2. L. He, Z.Q. Shi, and Y.D. Zheng, J. Electron. Mater. 25, 3 (1996).

    Article  Google Scholar 

  3. E.H. Rhoderick, Metal-Semiconductor Contacts (London: Oxford University Press, 1978).

    Google Scholar 

  4. Q. Zhang, V. Madangarli, M. Tarplee, and T.S. Sudarshan, J. Electron. Mater. 30, 3 (2001).

    Google Scholar 

  5. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 10 (1971).

    Article  Google Scholar 

  6. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, and F. Cardon, Solid-State Electron. 29, 6 (1986).

    Article  Google Scholar 

  7. A. Guzel, S. Duman, N. Yildirim, and A. Turut, J. Electron. Mater. 45, 6 (2016).

    Article  Google Scholar 

  8. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  9. Y.S. Lee and W.A. Anderson, J. Electron. Mater. 19, 6 (1990).

    Article  Google Scholar 

  10. S.O. Tan, IEEE Trans. Electron. Devices 64, 12 (2017).

    Google Scholar 

  11. S.A. Yerişkin, M. Balbaşı, and S. Demirezen, Indian J. Phys. 91, 4 (2017).

    Google Scholar 

  12. Ç.Ş. GüÇlü, A.F. Özdemir, and Ş. Altındal, Appl. Phys. A 122, 1032 (2016).

    Article  Google Scholar 

  13. Ö. Sevgili, S. Yılmaz, Ş. Altındal, E. Bacaksız, and Ç. Bilkan, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 87, 3 (2017).

    Article  Google Scholar 

  14. J.Y. Patil, A.V. Rajgure, L.K. Bagal, R.C. Pawar, I.S. Mulla, and S.S. Suryavanshi, Ceram. Int. 39, 4383 (2013).

    Article  Google Scholar 

  15. T. Singh, D.K. Pandya, and R. Singh, J. Alloys Compd. 509, 5095 (2011).

    Article  Google Scholar 

  16. Y. Caglar, M. Caglar, S. Ilıcani, and A. Ateş, J. Phys. D Appl. Phys. 42, 065421 (2009).

    Article  Google Scholar 

  17. H. Aydın, H.M. El-Nasser, C. Aydın, and A.A. Al-Ghamdi, Appl. Surf. Sci. 350, 109 (2015).

    Article  Google Scholar 

  18. S. Vijayalakshmi, S. Venkataraj, and R. Javayel, J. Phys. D Appl. Phys. 41, 245403 (2008).

    Article  Google Scholar 

  19. W.E. Mahmoud, A.A. Al-Ghamdi, F. El Tantawy, and S. Al Heniti, J. Alloys Compd. 485, 59 (2009).

    Article  Google Scholar 

  20. A.M. El Sayed, S. Taha, G. Said, and F. Yakuphanoğlu, Superlattices Microstruct. 65, 35 (2014).

    Article  Google Scholar 

  21. O. ÇiÇek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, İ. Orak, and Ş. Altındal, Compos. B Eng. 113, 14 (2017).

    Article  Google Scholar 

  22. M.A. Laurent, G. Gupta, D.J. Suntrup, S.P. DenBaars, and U.K. Mishra, J. Appl. Phys. 119, 6 (2016).

    Article  Google Scholar 

  23. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  24. E. Özavcı, S. Demirezen, U. Aydemir, and Ş. Altındal, Sens. Actuators A 194, 259 (2013).

    Article  Google Scholar 

  25. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum Press, 1984).

    Book  Google Scholar 

  26. S.O. Tan, H.U. Tecimer, O. ÇiÇek, H. Tecimer, İ. Orak, and Ş. Altındal, J. Mater Sci. Mater. Electron. 27, 8340 (2016).

    Article  Google Scholar 

  27. R.T. Tung, J.P. Sullivan, and F. Schrey, Mater. Sci. Eng. B 14, 266 (1992).

    Article  Google Scholar 

  28. R. Tung, Appl. Phys. Lett. 58, 2821 (1991).

    Article  Google Scholar 

  29. W. Mönch, J. Vac. Sci. Technol. 17, 4 (1997).

    Google Scholar 

  30. R.F. Schmitsdrof, T.U. Kampen, and W. Mönch, J. Vac. Sci. Technol. B 15, 4 (1997).

    Google Scholar 

  31. A.N. Corpus-Mendoza, M.M. De Souza, and F. Hamelmann, J. Appl. Phys. 114, 184 (2013).

    Article  Google Scholar 

  32. İ. Taşçıoğlu, W.A. Farooq, R. Turan, ş. Altındal, and F. Yakuphanoğlu, J. Alloys Compd. 590, 157 (2014).

    Article  Google Scholar 

  33. V.R. Reddy, V. Janardhanam, C.H. Leem, and C.J. Choi, Superlattices Microstruct. 67, 242 (2014).

    Article  Google Scholar 

  34. V.R. Reddy, V. Manjunath, V. Janardhanam, C.H. Leem, and C.J. Choi, J. Electron. Mater. 44, 1 (2015).

    Article  Google Scholar 

  35. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, and Ş. Altındal, J. Mater. Sci. Mater. Electron. 28, 5 (2017).

    Article  Google Scholar 

  36. N. Yıldırım, K. Ejderha, and A. Türüt, J. Appl. Phys. 108, 114506 (2010).

    Article  Google Scholar 

  37. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, J. Appl. Phys. 102, 113701 (2007).

    Article  Google Scholar 

  38. M. Asghar, K. Mahmood, S. Rabia, B. Samaa, M. Shahid, and M. Hasan, IOP Conf. Ser. Mater. Sci. Eng. 60, 012041 (2014).

    Article  Google Scholar 

  39. S. Mahato and J. Puigdollers, Phys. B Condens Matter. 530, 1 (2018).

    Article  Google Scholar 

  40. S. Chand and J. Kumar, Semicond. Sci. Technol. 11, 8 (1996).

    Article  Google Scholar 

  41. N. Yıldırım, A. Turgut, and V. Turut, Microelectron. Eng. 87, 11 (2010).

    Google Scholar 

  42. R. Kumar and S. Chand, J. Mater. Sci. Mater. Electron. 25, 4531 (2014).

    Article  Google Scholar 

  43. A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, and ş. Altındal, J. Mater. Sci. Mater. Electron. 29, 159 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlke Taşçıoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşçıoğlu, İ., Tan, S.O., Yakuphanoğlu, F. et al. Effectuality of Barrier Height Inhomogeneity on the Current–Voltage–Temperature Characteristics of Metal Semiconductor Structures with CdZnO Interlayer. J. Electron. Mater. 47, 6059–6066 (2018). https://doi.org/10.1007/s11664-018-6495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6495-z

Keywords

Navigation