Skip to main content
Log in

Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this research, bismuth sulfide nanostructures were prepared in the presence of polyvinyl alcohol (PVA) as a capping agent by an ultrasound-assisted method. The x-ray diffraction results show the crystalline phase of the sample and the mean crystalline size estimated by Debye–Scherer’s equation. The UV–Vis absorption spectrum show that the optical absorbance edge of Bi2S3 nanostructure was blue-shifted. The Fourier transform infrared spectra confirm the presence of PVA in the sample and transmission electron microscopy imaging shows that the structures are in nanoscale. The semi-logarithmic forward bias IV plots have two distinct linear regimes for each temperature which are called low- and moderate-bias regions (LBR and MBR). In order to effectively interpret possible current-conduction/transport mechanisms, the reverse saturation current (Io), ideality factor (n) and zero-bias barrier height (ΦBO) were obtained from the slope and intercept of these plots and they were found to be a strong function of temperature and voltage. The high value of n even at high temperature and the increase of ΦBO with increasing temperature for the two regions is clear evidence of the deviation from thermionic emission (TE) theory. Therefore, ΦBO versus n and q/2kT plots were drawn to get evidence of the Gaussian distribution (GD) of the barrier height (BH) and they show a linear behavior. The mean values of BH (\( \bar{\Phi }_{\rm{BO}} \)) and standard deviation (σs) were also obtained from the intercepts and slopes of the ΦBO versus q/2kT plots as 1.44 eV and 0.19 V for the LBR and 1.32 eV and 0.18 V for the MBR, respectively. After that, the values \( \bar{\Phi }_{\rm{BO}} \) and effective Richardson constant (A*) were obtained as 1.29 eV and 267.6 A/(cm K)2 for the LBR and 1.27 eV and 281.7 A/(cm K)2 for the MBR, respectively. Such non-ideal IVT characteristics for the Al/(PVA-Bi2S3)/p-Si structure can be successfully explained by the single GD of BH for the LBR and MBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hasnidawani, H. Azlina, H. Norita, N. Bonnia, S. Ratim, and E. Ali, Proc. Chem. 19, 211–216 (2016).

    Article  CAS  Google Scholar 

  2. T. Shahid, T. Khan, M. Zakria, R. Shakoor, and M. Arfan, J. Mater. Sci. Eng. 5, 6 (2016).

    Google Scholar 

  3. B. Wiley, Y. Sun, and Y. Xia, Acc. Chem. Res. 40, 1067–1076 (2007).

    Article  CAS  Google Scholar 

  4. F.B.E. Nişancı and U.M. Demir, Langmuir 28, 8571–8578 (2012).

    Article  Google Scholar 

  5. C.Q. Sun, Prog. Solid State Chem. 35, 1–159 (2007).

    Article  Google Scholar 

  6. F. Zhou, Q. Liu, J. Gu, W. Zhang, and D. Zhang, J. Power Sources 273, 945–953 (2015).

    Article  CAS  Google Scholar 

  7. G.A. Babu, G. Ravi, Y. Hayakawa, and M. Kumaresavanji, J. Magn. Magn. Mater. 375, 184–193 (2015).

    Article  Google Scholar 

  8. B. Ajitha, Y.A.K. Reddy, and P.S. Reddy, Powder Technol. 269, 110–117 (2015).

    Article  CAS  Google Scholar 

  9. Y. Azizian-Kalandaragh, Optoelectron. Adv. Mater. Rapid Commun. 10, 201–204 (2016).

    CAS  Google Scholar 

  10. J. Wu, F. Qin, F.Y. Chan, G. Cheng, H. Li, Z. Lu, and R. Chen, Mater. Lett. 64, 287–290 (2010).

    Article  CAS  Google Scholar 

  11. H. Bao, C.M. Li, X. Cui, Y. Gan, Q. Song, and J. Guo, Small 4, 1125–1129 (2008).

    Article  CAS  Google Scholar 

  12. S.K. Batabyal, C. Basu, A. Das, and G. Sanyal, J. Nanosci. Nanotechnol. 7, 565–569 (2007).

    Article  CAS  Google Scholar 

  13. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, and S. Gholamrezaei, J. Nanostruct. 4, 227–232 (2014).

    Google Scholar 

  14. O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, Nat. Mater. 5, 118 (2006).

    Article  CAS  Google Scholar 

  15. A.D. Schricker, M.B. Sigman Jr, and B.A. Korgel, Nanotechnology 16, S508 (2005).

    Article  Google Scholar 

  16. K. Yao, W. Gong, Y. Hu, X. Liang, Q. Chen, and L.-M. Peng, J. Phys. Chem. C 112, 8721–8724 (2008).

    Article  CAS  Google Scholar 

  17. Y. Zhao, D. Gao, J. Ni, L. Gao, J. Yang, and Y. Li, Nano Res. 7, 765–773 (2014).

    Article  CAS  Google Scholar 

  18. G. Xie, Z.-P. Qiao, M.-H. Zeng, X.-M. Chen, and S.-L. Gao, Cryst. Growth Des. 4, 513–516 (2004).

    Article  CAS  Google Scholar 

  19. S. Fiat, E. Bacaksiz, M. Kompitsas, and G. Çankaya, J. Alloys Compd. 585, 178–184 (2014).

    Article  CAS  Google Scholar 

  20. Ç.Ş. GüÇlü, A.F. Özdemir, and Ş. Altindal, Appl. Phys. A 122, 1032 (2016).

    Article  Google Scholar 

  21. Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, Appl. Phys. Lett. 110, 093503 (2017).

    Article  Google Scholar 

  22. I. Jyothi, V. Janardhanam, H. Hong, and C.-J. Choi, Mater. Sci. Semicond. Process. 39, 390–399 (2015).

    Article  CAS  Google Scholar 

  23. T. Maeda, M. Okada, M. Ueno, Y. Yamamoto, T. Kimoto, M. Horita, and J. Suda, Appl. Phys. Express 10, 051002 (2017).

    Article  Google Scholar 

  24. E. Marıl, A. Kaya, H. Çetinkaya, S. KoÇyiğit, and Ş. Altındal, Mater. Sci. Semicond. Process. 39, 332–338 (2015).

    Article  Google Scholar 

  25. K. Nefzi, A. Rabhi, and M. Kanzari, J. Mater. Sci.: Mater. Electron. 28, 8733–8738 (2017).

    CAS  Google Scholar 

  26. M. Özer, D. Yıldız, Ş. Altındal, and M. Bülbül, Solid State Electron. 51, 941–949 (2007).

    Article  Google Scholar 

  27. V.R. Reddy, V. Janardhanam, C.-H. Leem, and C.-J. Choi, Superlattices Microstruct. 67, 242–255 (2014).

    Article  Google Scholar 

  28. J. Singh, R. Sharma, U. Sule, U. Goutam, J. Gupta, and S. Gadkari, Mater. Res. Express 4, 076301 (2017).

    Article  Google Scholar 

  29. Ö. Vural, Y. Şafak, A. Türüt, and Ş. Altındal, J. Alloys Compd. 513, 107–111 (2012).

    Article  CAS  Google Scholar 

  30. Ö. Yüksel, N. Tuğluoğlu, F. Çalışkan, and M. Yıldırım, Mater. Today Proc. 3, 1271–1276 (2016).

    Article  Google Scholar 

  31. S.A. Yerişkin, M. Balbaşı, and S. Demirezen, Indian J. Phys. 91, 421–430 (2017).

    Article  Google Scholar 

  32. Z. Khurelbaatar, M.-S. Kang, K.-H. Shim, H.-J. Yun, J. Lee, H. Hong, S.-Y. Chang, S.-N. Lee, and C.-J. Choi, J. Alloys Compd. 650, 658–663 (2015).

    Article  CAS  Google Scholar 

  33. V.R. Reddy, Thin Solid Films 556, 300–306 (2014).

    Article  CAS  Google Scholar 

  34. S.A. Yerişkin, M. Balbaşı, and İ. Orak, J. Mater. Sci.: Mater. Electron. 28, 14040–14048 (2017).

    Google Scholar 

  35. H. Çetinkaya, Ş. Altındal, I. Orak, and I. Uslu, J. Mater. Sci. Mater. Electron. 28, 7905–7911 (2017).

    Article  Google Scholar 

  36. M. Gökçen, T. Tunç, Ş. Altındal, and I. Uslu, Curr. Appl. Phys. 12, 525–530 (2012).

    Article  Google Scholar 

  37. A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, and ş. Altındal, J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018).

    Google Scholar 

  38. H. Durmuş, H.ş. Kılıç, S.Y. Gezgin, and ş. Karataş, Silicon 10, 361–369 (2018).

    Article  Google Scholar 

  39. F. Yigiterol, H. Güllü, Ö. Bayraklı, and D. Yıldız, J. Electron. Mater. 47, 2979–2987 (2018).

    CAS  Google Scholar 

  40. Y. Badali, A. Nikravan, Ş. Altındal, and İ. Uslu, J. Electron. Mater. 47, 3510–3520 (2018).

    Article  CAS  Google Scholar 

  41. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures: for Polycrystalline and Amorphous Materials, 2nd ed. (Hoboken: Wiley, 1974), p. 992.

    Google Scholar 

  42. B. Sahin, F. Bayansal, M. Yuksel, N. Biyikli, and H. Çetinkara, Ceram. Int. 40, 5237–5243 (2014).

    Article  CAS  Google Scholar 

  43. S. Boughdachi, Y. Azizian-Kalandaragh, Y. Badali, and Ş. Altındal, J. Mater. Sci.: Mater. Electron. 28, 17948–17960 (2017).

    CAS  Google Scholar 

  44. Z. Zhang, C. Zhou, L. Huang, X. Wang, Y. Qu, Y. Lai, and J. Li, Electrochim. Acta 114, 88–94 (2013).

    Article  CAS  Google Scholar 

  45. H. Wang, J.-J. Zhu, J.-M. Zhu, and H.-Y. Chen, J. Phys. Chem. B 106, 3848–3854 (2002).

    Article  CAS  Google Scholar 

  46. V. Kaltenhauser, T. Rath, W. Haas, A. Torvisco, S.K. Müller, B. Friedel, B. Kunert, R. Saf, F. Hofer, and G. Trimmel, J. Mater. Chem. C 1, 7825–7832 (2013).

    Article  CAS  Google Scholar 

  47. H.S. Mansur, C.M. Sadahira, A.N. Souza, and A.A. Mansur, Mater. Sci. Eng., C 28, 539–548 (2008).

    Article  CAS  Google Scholar 

  48. J. Coates, Encycl. Anal. Chem. 12, 10815–10837 (2000).

    Google Scholar 

  49. H. Card and E. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  CAS  Google Scholar 

  50. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices (Hoboken: Wiley, 2006).

    Book  Google Scholar 

  51. B. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Belin: Springer, 2013).

    Google Scholar 

  52. E. Marıl, Ş. Altındal, A. Kaya, S. Koçyiğit, and İ. Uslu, Philos. Mag. 95, 1049–1068 (2015).

    Article  Google Scholar 

  53. Y. Song, R. Van Meirhaeghe, W. Laflere, and F. Cardon, Solid State Electron. 29, 633–638 (1986).

    Article  CAS  Google Scholar 

  54. R. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  CAS  Google Scholar 

  55. M. Hudait, P. Venkateswarlu, and S. Krupanidhi, Solid State Electron. 45, 133–141 (2001).

    Article  CAS  Google Scholar 

  56. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522–1533 (1991).

    Article  CAS  Google Scholar 

  57. R. Schmitsdorf, T. Kampen, and W. Mönch, Surf. Sci. 324, 249–256 (1995).

    Article  CAS  Google Scholar 

  58. W. Mönch, Mater. Sci. Semicond. Process. 28, 2–12 (2014).

    Article  Google Scholar 

  59. T. Kampen, S. Park, and D. Zahn, Appl. Surf. Sci. 190, 461–466 (2002).

    Article  CAS  Google Scholar 

  60. A. Vearey-Roberts and D. Evans, Appl. Phys. Lett. 86, 072105 (2005).

    Article  Google Scholar 

  61. S. Chand and J. Kumar, Semicond. Sci. Technol. 11, 1203 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Azizian-Kalandaragh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boughdachi, S., Badali, Y., Azizian-Kalandaragh, Y. et al. Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K. J. Electron. Mater. 47, 6945–6953 (2018). https://doi.org/10.1007/s11664-018-6593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6593-y

Keywords

Navigation