Skip to main content
Log in

Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, Au/0.07 graphene-doped PVA/n-Si structures were fabricated and current conduction mechanism in these structures were investigated in the temperature range of 80–380 K through forward bias current–voltage (IV) measurements. Main electrical parameters were extracted from I–V data. Zero-bias barrier height (\(\overline{\varPhi }_{B0}\)) and ideality factor (n) were found strong functions of temperature and their values ranged from 0.234 eV and 4.98 (at 80 K) to 0.882 eV and 1.15 (at 380 K), respectively. Φ ap versus q/2kT plot was drawn to obtain an evidence of a Gaussian distribution of the barrier heights (BHs) and it revealed two distinct linear regions with different slopes and intercepts. The mean values of BH (Φ Bo) and zero-bias standard deviation (σ s ) were obtained from the intercept and slope of the linear regions of this plot as 1.30 eV and 0.16 V for the first region (280–380 K) and 0.74 eV and 0.085 V for the second region (80–240 K), respectively. Thus, the values of \(\overline{\varPhi }_{B0}\) and effective Richardson constant (A*) were also found from the intercept and slope of the modified Richardson plot [ln(I s /T 2) − q 2 σ 2 o /2k 2 T 2 vs q/kT] as 1.31 eV and 130 A/cm2 K2 for the first region and 0.76 eV and 922 A/cm2 K2 for the second region, respectively. The value of A* for the first region was very close to the theoretical value for n-Si (112 A/cm2 K2). The energy density distribution profile of surface states (Nss) was also extracted from the forward bias I–V data by taking into account voltage dependent effective BH (Φe) and n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G D Sharma, S K Gupta and M S Roy Thin Solid Films 333 176 (1998)

    Article  ADS  Google Scholar 

  2. A Tombak, Y S Ocak, S Asubay, T Kılıcoğlu, F Özkahraman Mater. Sci. Semicond Proces. 24 187 (2014)

    Article  Google Scholar 

  3. Ş Karataş and F Yakuphanoğlu Mater. Chem. Phys. 138 72 (2013)

    Article  Google Scholar 

  4. H Uslu, Ş Altındal and İ Dökme J. Appl. Phys. 108 104501 (2008)

    Article  Google Scholar 

  5. Ş Altındal, T Tunç, H Tecimer and İ Yucedağ Mater. Sci. Semicond. Proces. 28 48 (2014)

    Article  Google Scholar 

  6. I M Afandiyeva, S Demirezen and Ş Altındal J. Alloys Compd 552 423 (2013)

    Article  Google Scholar 

  7. M Soylu, M Cavaş, A A Al-Ghamdi, Z H Gafer, F El-Tantawy and F Yakuphanoğlu Solar Energy Mater. Solar cell. 124 180 (2014)

    Article  Google Scholar 

  8. H G Çetinkaya, S Alialy and Ş Altındal J. Mater. Sci: Mater Electron 26 3186 (2015)

    Google Scholar 

  9. H Uslu, İ Dökme, I M Afandiyeva and Ş Altındal Surf. Interface Anal. 42 807 (2010)

    Article  Google Scholar 

  10. S Demirezen, Ş Altındal and İ Uslu Curr. Appl. Phys. 13 53 (2013)

    Article  ADS  Google Scholar 

  11. İ Dökme and Ş Altındal Fiber Poly. 15 2253 (2014)

    Article  Google Scholar 

  12. Ö Güllü, M Çankaya, M Biber and A Türüt J. Phys: Condens. Matter. 20 215210 (2008)

    ADS  Google Scholar 

  13. S Parui, R Ruiter, P J Zomer, M Wojtaszek, B J Van Wees and T Banerjee J. Apply. Phys. 116 244505 (2014)

    Article  ADS  Google Scholar 

  14. Ç Bilkan, S Zeyrek, S E San and Ş Altındal Mater. Sci. in Semicond. Proces. 32 137 (2015)

    Article  Google Scholar 

  15. H G Çetinkaya, H Tecimer, H Uslu and Ş Altındal Curr. Appl. Phys. 13 1150 (2013)

    Article  ADS  Google Scholar 

  16. S A Yeriskin, H İ Ünal and B Sarı J. Appl. Polym. Sci. 120 390 (2011)

    Article  Google Scholar 

  17. H S Soliman, A Faidah, Sh El-Ghamdy and A A Hindi Phys. B Cond. Matter. 406 234512 (2011)

    Article  ADS  Google Scholar 

  18. H Li, J Wei, Y Ojan, J Zhang, J Yu and G Wang Colloids Surf. A: Physochem. Eng. Asp. 449 148 (2014)

    Article  Google Scholar 

  19. H Yang et al. Science 336 1140 (2012)

    Article  ADS  Google Scholar 

  20. M D Stoller, S Park, Y Zhu, J An, R S Ruoff Nano Lett. 8 3498 (2008)

    Article  ADS  Google Scholar 

  21. A Kaya, S Alialy, S Demirezen, M Balbaşı, S A Yerişkin and A Aytemur Ceram. Int. 42 322 (2016)

    Google Scholar 

  22. E Özavcı, S Demirezen, U Aydemir and Ş Altındal Sens. Actuators: A Phys. 194 259 (2013)

    Article  Google Scholar 

  23. E H Nicollian and A Goetzberger Bell Syst. Tech. J. 46 1055 (1967)

    Article  Google Scholar 

  24. E H Nicollian and J R Brews MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley) (1982)

    Google Scholar 

  25. S M Sze Physics of Semiconductor Devices, 2nd edn. (New York: Wiley) (1980)

    Google Scholar 

  26. H C Card and E H Rhoderick J. Phys. D Appl. Phys. 4 1589 (1971)

    Article  ADS  Google Scholar 

  27. R T Tung Phys. Rev. B 45 13509 (1992)

    Article  ADS  Google Scholar 

  28. P Chattopadhyay and D P Haldar Appl. Surf. Sci. 143 287 (1999)

    Article  ADS  Google Scholar 

  29. E H Rhoderick and R H Williams Metal Semiconductor Contacts, 2nd edn. (Oxford:Clarendon Press) (1988)

    Google Scholar 

  30. M K Hudait and S B Krupanidhi Phys. B 307 125 (2001)

    Article  ADS  Google Scholar 

  31. J H Werner and H H Güttler J. Appl. Phys. 69 1522 (1991)

    Article  ADS  Google Scholar 

  32. R Hackam and P Harrop IEEE Trans. Electron Devices 19 1231 (1972)

    Article  ADS  Google Scholar 

  33. Zs J Horvarth Solid-State Electron 39 176 (1996)

    Article  ADS  Google Scholar 

  34. R F Schmitsdorf, T U Kampen and W Mönch Surf. Sci. 324 249 (1995)

    Article  ADS  Google Scholar 

  35. A F Ozdemir, A Turut and A Kökçe Semicond. Sci. Technol. 21 298 (2006)

    Article  ADS  Google Scholar 

  36. H Tecimer, S Aksu, Y Atasoy, E Bacaksız and Ş Altındal Sens. Actuators: A Phys. 185 73 (2012)

    Article  Google Scholar 

  37. T U Kampen, S Park and D R T Zahn Appl. Surf. Sci. 190 461 (2002)

    Article  ADS  Google Scholar 

  38. A R V Roberts and D A Evans Appl. Phys. Lett. 86 072105 (2005)

    Article  ADS  Google Scholar 

  39. S Chand and J Kumar Semicond. Sci. Technol. 11 1203 (1996)

    Article  ADS  Google Scholar 

  40. N Tugluoglu, H Koralay, K.B. Akgül, Ş Çavdar, Indian J. Phys. 90 43 (2016)

    Article  ADS  Google Scholar 

  41. V R Reddy Indian J. Phys. 89 463 (2015)

    Article  ADS  Google Scholar 

  42. D Sri Silpa, P Sreehith, V R Reddy and V Janardhanam Indian J. Phys. 90 29 (2016)

    Article  Google Scholar 

  43. S Altındal J. Mater. Electron. Devices 1 42 (2015)

    Google Scholar 

  44. Y M Reddy, R Padmasuvarna, T L Narasappa, R Padma and V R Reddy Indian J. Phys. 89 1161 (2015)

    Google Scholar 

  45. A Bobby, N Shiwakoti, P S Gupta and B K Antony Indian J. Phys. 90 307 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project (Project number: GU-BAP.06/2016-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Demirezen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altındal Yerişkin, S., Balbaşı, M. & Demirezen, S. Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian J Phys 91, 421–430 (2017). https://doi.org/10.1007/s12648-016-0949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0949-z

Keywords

PACS Nos.

Navigation