Skip to main content
Log in

MgO@CeO2 chemiresistive flexible sensor for room temperature LPG detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays, gas sensors are playing an essential role in wearable electronic devices for detecting pollutant, flammable, toxic gases besides it needs to be flexible, transparent, and operating at room temperature. Liquefied petroleum gas detection is critical because it is a flammable and toxic gas that of dangerous to humans as well the environment. The present study reports the hydrothermally synthesized MgO@CeO2 nanocomposite coated on flexible Polyethylene terephthalate substrate printed interdigitated gold electrodes (working electrodes) through the spin coating and continued for liquefied petroleum gas detection (50–900 ppm) at room temperature. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy were used to analyze the structural and morphological studies of prepared nanomaterials. The fabricated low-cost, eco-friendly MgO@CeO2 chemiresistive flexible sensor showed good selectivity towards analyte at room temperature with a sensitivity of 32% at 900 ppm and lower detection of 5% towards 50 ppm along with good long-term stability and mechanical flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Lee, D.J. Bae, W.K. Lee, C.M. Yang et al., Carbon 145, 462 (2019). https://doi.org/10.1016/j.carbon.2019.01.004

    Article  CAS  Google Scholar 

  2. Guofeng Shen, Michael D. Hays et al., Environ. Sci. Technol. 52(2), 904 (2018)

    Article  CAS  Google Scholar 

  3. Khanh Nguyen Duc, Vinh Nguyen Duy, Energy. Sustain. Dev. 43, 60 (2018). https://doi.org/10.1016/j.esd.2017.12.005

    Article  Google Scholar 

  4. D.S. Adelekan, O.S. Ohunakin, J. Gill et al., J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7879-2

    Article  Google Scholar 

  5. Y.W. Ng, Y. Huo, W. Chow et al., Building Simulation, vol. 10 (Tsinghua University Press, Beijing, 2017), p. 755. https://doi.org/10.1007/s12273-017-0366-z

    Book  Google Scholar 

  6. Y.H. Kim, Y.S. Choi, S.Y. Park et al., Nanoscale 11(6), 2966 (2019). https://doi.org/10.1039/c8nr09076a

    Article  CAS  Google Scholar 

  7. E.G. Jeong, Y. Jeon, S.H. Cho, K.C. Choi, Energy Environ. Sci. (2019). https://doi.org/10.1039/c8ee03271h

    Article  Google Scholar 

  8. R. Xie, Q. Du, B. Zou, Y. Chen, K. Zhang, Y. Liu, F. Huo, ACS Appl. Bio Mater. 24, 1427 (2019). https://doi.org/10.1021/acsabm.9b00082

    Article  CAS  Google Scholar 

  9. F. Memarian, S. Rahmani, M. Yousefzadeh, M. Latifi, Materials in Sports Equipment (Woodhead Publishing, Sawston, 2019), p. 123. https://doi.org/10.1016/B978-0-08-102582-6.00004-6

    Book  Google Scholar 

  10. L. Yu, Y. Yi, T. Yao et al., Nano Res. 12(2), 331 (2019). https://doi.org/10.1007/s12274-018-2219-1

    Article  CAS  Google Scholar 

  11. Y. Shi, X. Wang, J. Luo et al., J. Mater. Sci. 30(4), 3692 (2019). https://doi.org/10.1007/s10854-018-00649-3

    Article  CAS  Google Scholar 

  12. O.Y. Kweon, M.Y. Lee, T. Park, H. Jang, A. Jeong, M.-K. Um, J.H. Oh, J. Mater. Chem. C 7, 1525 (2019). https://doi.org/10.1039/c8tc06051g

    Article  CAS  Google Scholar 

  13. S.B. Kulkarni, Y.H. Navale, S.T. Navale et al., J. Mater. Sci. 30(9), 8371 (2019). https://doi.org/10.1007/s10854-019-01154-x

    Article  CAS  Google Scholar 

  14. R. Thangarasu, E. Thangavel, J. Chandrasekaran et al., J. Mater. Sci. 30(4), 4238 (2019). https://doi.org/10.1007/s10854-019-00715-4

    Article  CAS  Google Scholar 

  15. N. Singh, P.K. Singh, M. Singh et al., J. Mater. Sci. 30, 4487 (2019). https://doi.org/10.1007/s10854-019-00737-y

    Article  CAS  Google Scholar 

  16. S. Goutham, N. Jayarambabu, C. Sandeep et al., Microchim. Acta 186, 62 (2019). https://doi.org/10.1007/s00604-018-3170-2

    Article  CAS  Google Scholar 

  17. N. Saxena, P. Kumar, V. Gupta, Nanoscale Adv. (2019). https://doi.org/10.1039/c9na00053d

    Article  Google Scholar 

  18. B. Thomas, S. Deepa, K. Prasanna Kumari, Ionics 25, 809 (2019). https://doi.org/10.1007/s11581-018-2732-y

    Article  CAS  Google Scholar 

  19. J. Xu, X. Chen, Y. Xu, Y. Du, C. Yan, Adv. Mater. (2019). https://doi.org/10.1002/adma.201806461

    Article  Google Scholar 

  20. D. Van Dao, T.T.D. Nguyen, S.M. Majhi, G. Adilbish, H.-J. Lee, Y.-T. Yu, I.-H. Lee, Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.03.025

    Article  Google Scholar 

  21. Yi Ding, Guangtao Zhang, Wu Hao, Bin Hai, Liangbin Wang, Yitai Qian, Chem. Mater. 132, 435 (2001). https://doi.org/10.1021/cm000607e

    Article  CAS  Google Scholar 

  22. D. Van Dao, T.T.D. Nguyen et al., Mater. Chem. Phys. 231, 1 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.025

    Article  CAS  Google Scholar 

  23. R. Magudieswaran, J. Ishii, K.C.N. Raja, C. Terashima, R. Venkatachalam, A. Fujishima, S. Pitchaimuthu, Mater. Lett. 239, 40 (2018). https://doi.org/10.1016/j.matlet.2018.11.172

    Article  CAS  Google Scholar 

  24. S. Liu, Z. Wang, T. Han, T. Fei, T. Zhang, ACS Appl. Nano Mater. 25, 2606 (2019). https://doi.org/10.1021/acsanm.9b00600

    Article  CAS  Google Scholar 

  25. F. Meng, Z. Lu, R. Zhang, G. Li, Talanta 194, 910 (2018). https://doi.org/10.1016/j.talanta.2018.11.016

    Article  CAS  Google Scholar 

  26. H. Yi, C. Ma, X. Tang, S. Zhao et al., Chem. Eng. J. 372, 129 (2019). https://doi.org/10.1016/j.cej.2019.04.120

    Article  CAS  Google Scholar 

  27. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, J. Hazard. Mater. 370, 126 (2018). https://doi.org/10.1016/j.jhazmat.2018.10.016

    Article  CAS  Google Scholar 

  28. Shaohui Yan, Xiyin Liang, Haisheng Song, Shuyi Ma, Lu Yan, Ceram. Int. 44(1), 358 (2018). https://doi.org/10.1016/j.ceramint.2017.09.181

    Article  CAS  Google Scholar 

  29. S. Hussain, N. Aslam, X.Y. Yang, M.S. Javed, Z. Xu, M. Wang, G. Liu, G. Qiao, Ceram. Int. 44(16), 19624 (2018). https://doi.org/10.1016/j.ceramint.2018.07.212

    Article  CAS  Google Scholar 

  30. D. Xue, Y. Wang, J. Cao, Z. Zhang, Nanomaterials 8(12), 1025 (2018). https://doi.org/10.3390/nano8121025

    Article  CAS  Google Scholar 

  31. Chunhua Liu, Huiling Tai, Peng Zhang, Zhen Yuan, Du Xiaosong, Guangzhong Xie, Yadong Jiang, Sens. Actuators B 261, 587 (2018). https://doi.org/10.1016/j.snb.2017.12.022

    Article  CAS  Google Scholar 

  32. H. Wang, Z. Guo, W. Hao, L. Sun, Y. Zhang, E. Cao, Mater. Lett. 234, 40 (2019). https://doi.org/10.1016/j.matlet.2018.09.058

    Article  CAS  Google Scholar 

  33. Q. Meng, J. Cui, Y. Tang et al., Ceram. Int. 45(3), 4103 (2018). https://doi.org/10.1016/j.ceramint.2018.10.239

    Article  CAS  Google Scholar 

  34. L. Zhang, Q. Fang, Y. Huang, K. Xu, P.K. Chu, F. Ma, Anal. Chem. 90(16), 9821 (2018). https://doi.org/10.1021/acs.analchem.8b01768

    Article  CAS  Google Scholar 

  35. S. Kaur, J. Singh, R. Rawat et al., J. Mater. Sci. 29, 11679 (2018). https://doi.org/10.1007/s10854-018-9266-y

    Article  CAS  Google Scholar 

  36. E. Paparazzo, G. Moretti, J. Alloys Compd. 770, 942 (2019). https://doi.org/10.1016/j.jallcom.2018.08.190

    Article  CAS  Google Scholar 

  37. R. Bhargava, S. Khan, Phys. Lett. A 383(14), 1671 (2019). https://doi.org/10.1016/j.physleta.2019.02.030

    Article  CAS  Google Scholar 

  38. M.K. Filippidou, M. Chatzichristidi, S. Chatzandroulis, Sens. Actuators B 284, 7 (2019). https://doi.org/10.1016/j.snb.2018.12.095

    Article  Google Scholar 

  39. S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Sens. Actuators, B 288, 279 (2019). https://doi.org/10.1016/j.snb.2019.02.094

    Article  CAS  Google Scholar 

  40. A.I. Daud, K.A.A. Wahid, W.M. Khairul, Org. Electron. 70, 32 (2019). https://doi.org/10.1016/j.orgel.2019.04.001

    Article  CAS  Google Scholar 

  41. E. Gómez-Ramírez, L.A. Maeda-Nunez, L.C. Álvarez-Simón, F.G. Flores-García, Electronics 8(3), 263 (2019). https://doi.org/10.3390/electronics8030263

    Article  Google Scholar 

  42. D. Durgalakshmi, R. Ajay Rakkesh, S. Kamil et al., J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01105-3

    Article  Google Scholar 

  43. Y. Shilpa, V. Sarnatskaya, I. Timashkov et al., Appl. Phys. A 125, 412 (2019). https://doi.org/10.1007/s00339-019-2706-6

    Article  CAS  Google Scholar 

  44. Sandra M. Londoño-Restrepo, Rodrigo Jeronimo-Cruz, Beatriz M. Millán-Malo, Eric M. Rivera-Muñoz, Mario E. Rodriguez-García, Sci. Rep. 9, 5915 (2019)

    Article  CAS  Google Scholar 

  45. Y. Deng, Semiconducting Metal Oxides for Gas Sensing (Springer, Singapore, 2019), p. 23. https://doi.org/10.1007/978-981-13-5853-1_2

    Book  Google Scholar 

  46. M. Tabibi, Z. Rafiee, M.H. Sheikhi, Fundam. Res. Electr. Eng. 480, 359 (2018). https://doi.org/10.1007/978-981-10-8672-4_27

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their sincere appreciation to the Centre for Nano Science & Technology, IST-JNTUH for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkateswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai Bhargava Reddy, M., Kailasa, S., Geeta Rani, B. et al. MgO@CeO2 chemiresistive flexible sensor for room temperature LPG detection. J Mater Sci: Mater Electron 30, 17295–17302 (2019). https://doi.org/10.1007/s10854-019-02076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02076-4

Navigation