Skip to main content
Log in

Synthesis of CeO2 nanoparticles by precipitation in reversal microemulsions and their physical–chemical and biological properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cerium dioxide nanoparticles (CeO2) were synthesized by precipitation in the reversal microemulsions based on different surfactants. Crystallographic properties and morphology of CeO2 nanoparticles were studied by X-ray diffraction method and transmission electron microscopy. It was established that CeO2 nanoparticles synthesized in the reversal microemulsions had sizes in the range of 6–10 nm. Zeta-potential values of nanoparticles were measured by dynamic light scattering method and stability of CeO2 in the aqueous suspension was estimated. It was shown that CeO2 nanoparticles formed high-stable aqueous suspensions. It was studied that CeO2 nanoparticles displayed catalase-like activity and they could be promising for development of the antioxidant nanomaterials for treatment of the sequences of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Barkalina, C. Charalambous, C. Jones, K. Coward, Nanomed. Nanotechnol. Biol. Med. 10, 921 (2014)

    Article  Google Scholar 

  2. Z. Xiao, O.C. Farokhzad, ACS Nano 6, 3670 (2012)

    Article  Google Scholar 

  3. R. Singh, H.S. Nalwa, J. Biomed. Nanotechnol. 7, 489 (2011)

    Article  Google Scholar 

  4. C. Sun, J.S.H. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60, 1252 (2008)

    Article  Google Scholar 

  5. F.-R.E. Curry, Nat. Nanotechnol. 11, 494 (2016)

    Article  ADS  Google Scholar 

  6. S.N. Tabatabaei, H. Girouard, A.S. Carret, S. Martel, J. Control. Release 206, 49 (2015)

    Article  Google Scholar 

  7. B. Thiesen, A. Jordan, Int. J. Hyperth. 24, 467 (2008)

    Article  Google Scholar 

  8. Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Mater. Des. 123, 174 (2017)

    Article  Google Scholar 

  9. Z.P. Xu, Q.H. Zeng, G.Q. Lu, A.B. Yu, Chem. Eng. Sci. 61, 1027 (2006)

    Article  Google Scholar 

  10. A.H. Faraji, P. Wipf, Bioorg. Med. Chem. 17, 2950 (2009)

    Article  Google Scholar 

  11. A. Burns, W.T. Self, Antioxidant Inorganic Nanoparticles and Their Potential Applications in Biomedicine (Elsevier Inc., Amsterdam, 2018)

    Book  Google Scholar 

  12. A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Chem. Soc. Rev. 39, 4422 (2010)

    Article  Google Scholar 

  13. L. Valgimigli, A. Baschieri, R. Amorati, J. Mater. Chem. B 6, 2036 (2018)

    Article  Google Scholar 

  14. A.C. Maritim, R.A. Sanders, J.B. Watkins, J. Biochem. Mol. Toxicol. 17, 24 (2003)

    Article  Google Scholar 

  15. W. He, W. Wamer, Q. Xia, J.J. Yin, P.P. Fu, J. Environ. Sci. Heal. Part C Environ. Carcinog. Ecotoxicol. Rev. 32, 186 (2014)

    Article  Google Scholar 

  16. C. Xu, X. Qu, NPG Asia Mater. 6, e90 (2014)

    Article  Google Scholar 

  17. B. Nelson, M. Johnson, M. Walker, K. Riley, C. Sims, Antioxidants 5, 15 (2016)

    Article  Google Scholar 

  18. C. Walkey, S. Das, S. Seal, J. Erlichman, K. Heckman, L. Ghibelli, E. Traversa, J.F. McGinnis, W.T. Self, Environ. Sci. Nano 2, 33 (2015)

    Article  Google Scholar 

  19. T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, W.T. Self, Chem. Commun. 46, 2736 (2010)

    Article  Google Scholar 

  20. K.M. Dunnick, R. Pillai, K.L. Pisane, A.B. Stefaniak, E.M. Sabolsky, S.S. Leonard, Biol. Trace Elem. Res. 166, 96 (2015)

    Article  Google Scholar 

  21. S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, T. Fukuda, Nanostruct. Mater. 11, 141 (1999)

    Article  Google Scholar 

  22. S.S. Lee, W. Song, M. Cho, H.L. Puppala, P. Nguyen, H. Zhu, L. Segatori, V.L. Colvin, ACS Nano 7, 9693 (2013)

    Article  Google Scholar 

  23. C. Hu, Z. Zhang, H. Liu, P. Gao, Z.L. Wang, Nanotechnology 17, 5983 (2006)

    Article  ADS  Google Scholar 

  24. M.J. Godinho, R.F. Gonçalves, L.P.S. Santos, J.A. Varela, E. Longo, E.R. Leite, Mater. Lett. 61, 1904 (2007)

    Article  Google Scholar 

  25. D. He, G. Wan, H. Hao, D. Chen, J. Lu, L. Zhang, F. Liu, L. Zhong, S. He, Y. Luo, Chem. Eng. J. 289, 161 (2016)

    Article  Google Scholar 

  26. M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1301 (2015)

    Article  Google Scholar 

  27. Y.A.S. Khadar, A. Balamurugan, V.P. Devarajan, R. Subramanian, Orient. J. Chem. 33, 2405 (2017)

    Article  Google Scholar 

  28. B. Xia, I.W. Lenggoro, K. Okuyama, J. Mater. Chem. 11, 2925 (2001)

    Article  Google Scholar 

  29. Y. He, B. Yang, G. Cheng, Mater. Lett. 57, 1880 (2003)

    Article  Google Scholar 

  30. S. Sathyamurthy, K.J. Leonard, R.T. Dabestani, M.P. Paranthaman, Nanotechnology 16, 1960 (2005)

    Article  ADS  Google Scholar 

  31. M.A. Malik, M.Y. Wani, M.A. Hashim, Arab. J. Chem. 5, 397 (2012)

    Article  Google Scholar 

  32. A.K. Ganguli, A. Ganguly, S. Vaidya, Chem. Soc. Rev. 39, 474 (2010)

    Article  Google Scholar 

  33. R. Pournajaf, S.A. Hassanzadeh-Tabrizi, M. Ghashang, Ceram. Int. 40, 4933 (2014)

    Article  Google Scholar 

  34. C. Stubenrauch (ed.), Microemulsions Background, New Concepts, Applications, Perspectives (Willey, Hoboken, 2009)

    Google Scholar 

  35. X. Fang, Ch. Yang, J. Colloid Interface Sci. 212, 242 (1999)

    Article  ADS  Google Scholar 

  36. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. 32, 36 (1999)

    Article  Google Scholar 

  37. L. Barbieri, A. Ferrari, I. Lancellotti, C. Leonelli, J.M. Rincón, J. Am. Ceram. Soc. 83, 2515 (2000)

    Article  Google Scholar 

  38. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  ADS  Google Scholar 

  39. A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  40. A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, J. Colloid Interface Sci. 309, 194 (2007)

    Article  ADS  Google Scholar 

  41. L. Goth, Clin. Chim. Acta 196, 143 (1991)

    Article  Google Scholar 

  42. S. Bhattacharjee, J. Control. Release 235, 337 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NAS of Ukraine in the framework of Target Program of Scientific Researches of the National Academy of Sciences of Ukraine “Materials for medicine and medical technology and technologies for their obtaining and application” No 0017U001915 (2017–2021), Grants of the National Academy of Sciences of Ukraine to research laboratories/groups of young scientists of the National Academy of Sciences of Ukraine No 0118U002326 and common Ukrainian-Slovak JOINT RESEARCH project. The appreciation for the possibility of electron microscopic studies is expressed to Kharchuk Maxim and Center for Shared Use of Danylo Zabolotny Institute of Microbiology and Virology of NAS of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Shlapa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlapa, Y., Sarnatskaya, V., Timashkov, I. et al. Synthesis of CeO2 nanoparticles by precipitation in reversal microemulsions and their physical–chemical and biological properties. Appl. Phys. A 125, 412 (2019). https://doi.org/10.1007/s00339-019-2706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2706-6

Navigation