Skip to main content
Log in

Few layer graphene/silver nanocomposite based flexible and resistive liquefied petroleum gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The LPG gas sensing characteristics of hybrid few-layered graphene (FLG)/ silver nanoparticles (Ag NPs) nanoarchitecture have been investigated. FLG and silver nanoparticles (Ag NPs) enhance the LPG gas sensing characteristics by collectively involving in the electronic transportation and diffusion mechanisms. FLG, Ag and FLG/ Silver nanocomposites are developed by ultra-sonication assisted method, and the effect of flexibility on gas sensing performance was thoroughly examined. The sensing materials as thin films are developed via drop-casting technique on photo lithography patterned flexible interdigitated electrodes (IDEs). The gas sensing characteristics of the prepared sensor are studied for LPG and other analytes at room temperature. The maximum response is observed for FLG/Ag nanocomposite to 100 ppm LPG at room temperature. FLG/Ag nanocomposite sensor demonstrates rapid response, high selectivity, reproducibility and good stability over a period of 30 days. Further the durability and flexibility tests conducted for the FLG/Ag hybrid sensor at bending angles reveal 78% stability even after 15 days of sensing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Kahl, E. Voges, Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61, 14078–14088 (2000)

    Article  CAS  Google Scholar 

  2. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat Photon 6, 749–758 (2012)

    Article  CAS  Google Scholar 

  3. X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, L. Guo, Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Phys Chem Chem Phys 17, 10176–10181 (2015)

    Article  CAS  Google Scholar 

  4. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, Detection of individual gas molecules adsorbed on grapheme. Nat Mater 6, 652–655 (2013)

    Article  CAS  Google Scholar 

  5. W.J. Yuan, A.R. Liu, L. Huang, C. Li, G.Q. Shi, High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 257, 66–71 (2012)

    Google Scholar 

  6. J.L. Johnson, A. Behnam, S.J. Pearton, A. Ural, Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22, 4877–4885 (2010)

    Article  CAS  Google Scholar 

  7. S. Rumyantsev, G.X. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett 12, 2294–2298 (2012)

    Article  CAS  Google Scholar 

  8. M. Jong Ju, I-Y. Jeon, J. Cheon Kim, K. Lim, H-J. Choi, S-M. Jung, I. Taek Choi, Y. Kyung Eom, Y. Jin Kwon, J. Ko, J-J. Lee, H.K. Kim, J-B. Baek, Graphene nanoplatelets doped with N at its edges as metal-free cathodes for organic dye sensitized solar cells. Adv. Mater. 26, 3055–30562 (2014)

    Article  CAS  Google Scholar 

  9. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)

    Article  CAS  Google Scholar 

  10. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  CAS  Google Scholar 

  11. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  12. F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6, 30–33 (2010)

    Article  CAS  Google Scholar 

  13. P.G. Song, Z.H. Cao, Y.Z. Cai, L.P. Zhao, L.P. Fang, S.Y. Fu, Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52, 4001–4010 (2011)

    Article  CAS  Google Scholar 

  14. Y.C. Tian, H. Tian, Y.L. Wu, L.L. Zhu, L.Q. Tao, W. Zhang, Y. Shu, D. Xie, Y. Yang, Y.Z. Wei, X.H. Lu, T. Ren, C. Shih, J.M. Zhao, Coherent generation of photo-thermo-acoustic wave from graphene sheets. Sci. Rep. 5, 10582–10582 (2015)

    Article  Google Scholar 

  15. R. Wu, Y.L. Zhang, S.C. Yan, F. Bian, W.L. Wang, X.D. Bai, X.H. Lu, J.M. Zhao, E.G. Wang, Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano. Lett. 11, 5159–5164 (2011)

    Article  CAS  Google Scholar 

  16. A. Srivastava, J. Kiran, R.A.K. Srivastava, S.T. Lakshmikumar, Study of structural and microstructural properties of SnO2 powder for LPG and CNG gas sensors. Mater. Chem. Phys. 97, 85–90 (2006)

    Article  CAS  Google Scholar 

  17. R.J. Wu, Y.L. Sun, C.C. Lin, H.W. Chen, M. Chavali, Composite of TiO2 nanowires and Nafion as humidity sensor material. Sensor. Actuator. B. Chem. 115, 198–204 (2006)

    Article  CAS  Google Scholar 

  18. G.K. Mani, J.B.B. Rayappan, ZnO nanoarchitectures: Ultrahigh sensitive room temperature acetaldehyde sensor. Sensor. Actuator. B. Chem. 223, 343–351 (2016)

    Article  CAS  Google Scholar 

  19. F. Du, H. Zhang, X. Du, J. Zhu, X. Zhong, Controllable synthesis and optical properties of CdS/CdSe hetero-nanostructures with various dimensionalities. Mater. Chem. Phys. 148, 118–124 (2010)

    Article  CAS  Google Scholar 

  20. S. Hui, L. Xin, C. Ping, G. Shixi, L. Weihua, W. Xiaoli, Morphology optimization of CVD graphene decorated with Ag nanoparticles as ammonia sensor. Sensor. Actuators. B. 244, 124–130 (2017)

    Article  CAS  Google Scholar 

  21. O. Oleksandr, N. Yun-Sik, T. Oleksandr, L. Phan-Thi, M. Myoung-Woon, L. Kang-Bong, Highly sensitive chemiresistive H2S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities. Sens. Actuators, B Chem. 257, 278–285 (2017)

    Google Scholar 

  22. R. Zhang, H. Pang, Application of graphene-metal/conductive polymer based composites in supercapacitors. J. Ener. Storage 33, 102037–102065 (2021)

    Article  Google Scholar 

  23. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  24. S. Goutham, S.K. Devarai, K.S. Kishor, J.C. John, V.R. Kalagadda, Nanostructure ZnFe2O4 with Bacillus subtilis for detection of LPG at low temperature. J. Electron. Mater. 46, 2334–2339 (2017)

    Article  CAS  Google Scholar 

  25. S. Goutham, K. Sukhpreet, K.S. Kishor, K.B. Jayanta, N. Jayarambabu, D.S. Kumar, K.V. Rao, Nanostructured ZnO gas sensors obtained by green method and combustion technique. Mater. Sci. Semicond. Process. 57, 110–115 (2017)

    Article  CAS  Google Scholar 

  26. J.G. Thangamani, D. Kalim, K.S. Kishor, P. Deepalakshmi, S. Goutham, K.V. Rao, K. Chidambaram, M.B. Ahamed, A.N. Grace, F. Muhammad, S.K.K. Pasha, White graphene reinforced polypyrrole and poly (vinyl alcohol) blend nanocomposites as chemoresistive sensors for room temperature detection of liquid petroleum gases. Microchim. Acta. 12, 2402–2409 (2017)

    Google Scholar 

  27. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  CAS  Google Scholar 

  28. Z. Xu, G. Hu, Simple and green synthesis of monodisperse silver nanoparticles and surface-enhanced Raman scattering activity. RSC Adv. 2, 11404–11409 (2012)

    Article  CAS  Google Scholar 

  29. B.G. Ghule, S.F. Shaikh, N.M. Shinde, S.S. Sangale, P.V. Shinde, R.S. Mane, Promoted room-temperature LPG gas sensor activity of graphene oxide@Fe2O3 composite sensor over individuals. Mater. Res. 5, 12500 (2018)

    Google Scholar 

  30. S. Goutham, N. Jayarambabu, D. Santhosh Kumar, K. Venkateswara Rao, Resistive room temperature LPG sensor basedon a graphene/CdOnanocomposite. Microchimica Acta 186, 62 (2019)

    Article  CAS  Google Scholar 

  31. S. Goutham, S. Bykkam, K.K. Sadasivuni, D. Santhosh Kumar, A. Mohsen, Z. Arifin Ahmad, K. Venkateswara Rao, Room temperature LPG resistive sensor based on the use of a few-layer graphene/SnO2 nanocomposite. Microchimica Acta 185, 69 (2017)

    Article  CAS  Google Scholar 

  32. V. Munusami, K. Arutselvan, S. Vadivel, Development of high sensitivity LPG and NO2 gas sensor based ZnGa2O4/ graphenenanoplates hybrid structure—A novel approach. Diam. Relat. Mater. 111, 108167 (2017)

    Article  CAS  Google Scholar 

  33. JiayuMiao MenghanTian, HongchenMu PengfeiCheng, JianboSun JinchunTu, Appl Surf Sci. 479, 601–607 (2019)

    Article  CAS  Google Scholar 

  34. K.R. Nemade, S.A. Waghuley, Solid. State. Sci. 22, 27–32 (2013)

    Article  CAS  Google Scholar 

  35. M. Amarnath, A. Heiner, K. Gurunathan, Highly sensitive room temperature liquefied petroleum gas sensor based on CoSnO2 nanoislands deposited graphene layers. Synth. Metal. 270, 116607 (2020)

    Article  CAS  Google Scholar 

  36. K.R. Nemade, S.A. Waghuley, In situ synthesis ofgraphene/SnO2 quantumdotscomposites for chemiresistivegassensing. Mater. Sci. Semiconduct. Process. 24, 126–131 (2014)

    Article  CAS  Google Scholar 

  37. K.R. Nemade, S.A. Waghuley, LPG sensing application of graphene/CeO2 quantum dots composite. AIP Proc. 1536, 1258 (2013)

    CAS  Google Scholar 

  38. L. Yan-Li, L. Zhi-Min, Y. Yu, Y. Hai-Feng, S. Guo-Li, Y. Ru-Qin, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors actuators B 107, 600–604 (2005)

    Article  CAS  Google Scholar 

  39. L.K. Bangal, J.Y. Patil, I.S. Mulla, S.S. Suryavanshi, Ceramics Int 38, 4835–4844 (2012)

    Article  CAS  Google Scholar 

  40. P.S. Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sensor. Actuators. B. Chem. 212, 10–17 (2015)

    Article  CAS  Google Scholar 

  41. Q.T. Tran, H.T.M. Hoa, D.H. Yoo, T.V. Cuong, S.H. Hur, J.S. Chung, E.J. Kim, P.A. Kohl, Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sensor actuators b chem 194, 45–50 (2014)

    Article  CAS  Google Scholar 

  42. F.C. Fabiani, G. Fratesi, G.P. Brivio, Adsorption of H2S, HS, S, and H on a stepped Fe(310) surface. Eur Phys J B 78, 455–460 (2010)

    Article  CAS  Google Scholar 

  43. V.X. Hien, Y.W. Heo, Effects of violet green and red-laser illumination on gas-sensing properties of SnO thin film. Sens actuators B 228, 185–191 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (KVR) is thankful to Science and Engineering Research Board (SERB)—Department of Science and Technology (DST), Government of India, [Project No. SB/EMEQ-183/2013] for the generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalagadda Venkateswara Rao.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goutham, S., P, J., Jayarambabu, N. et al. Few layer graphene/silver nanocomposite based flexible and resistive liquefied petroleum gas sensor. J Mater Sci: Mater Electron 32, 23889–23899 (2021). https://doi.org/10.1007/s10854-021-06835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06835-0

Navigation