Skip to main content
Log in

The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) and GQDs–ZnO composites with different amounts of GQDs have been synthesized via a hydrothermal method. The GQDs were characterized HRTEM and size distribution analyzer. The GQDs–ZnO composites were studied by XRD, SEM, TG, FTIR, Raman and XPS, respectively. The gas sensing properties of GQDs–ZnO composites were investigated. It was found that the amount of GQDs in the composite has great influence on the gas response and gas sensing selectivity of the composite; the sensors based on GQDs–ZnO composites could be operated at room temperature and showed higher response to acetic acid gas than pure ZnO sensor; the sensor based on GQDs–ZnO (S-10) composite could detect 1 ppm acetic acid vapor at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Han, L. Hu, Z. Liang, S. Wageh, A.A. Al-Ghamdi, Y. Chen, X. Fang, One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 24, 5719–5727 (2014)

    CAS  Google Scholar 

  2. X.-F. Jiang, Q. Weng, X.-B. Wang, X. Li, J. Zhang, D. Golberg, Y. Bando, Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J. Mater. Sci. Technol. 31, 589–598 (2015)

    CAS  Google Scholar 

  3. S. Liu, L. Zheng, P. Yu, S. Han, X. Fang, Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv. Funct. Mater. 26, 3331–3339 (2016)

    CAS  Google Scholar 

  4. P. Govindhan, C. Pragathiswaran, M. Chinnadurai, Facile synthesis of GO/ZnO–Ag nanocomposite and evaluation of rhodamine B dye under sun light. J. Mater. Sci. 28, 354–362 (2017)

    CAS  Google Scholar 

  5. N. Gao, X. Fang, Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294–8343 (2015)

    CAS  Google Scholar 

  6. L.-S. Zhang, W.D. Wang, X.-Q. Liang, W.-S. Chu, W.-G. Song, W. Wang, Z.-Y. Wu, Characterization of partially reduced graphene oxide as room temperature sensor for H2., Nanoscale 3 2458–2460 (2011)

  7. R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A.L. Spetz, R. Yakimova, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B 155, 451–455 (2011)

    CAS  Google Scholar 

  8. R.K. Joshi, H. Gomez, F. Alvi, A. Kumar, Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J. Phys. Chem. C 114, 6610–6613 (2010)

    CAS  Google Scholar 

  9. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009)

    CAS  Google Scholar 

  10. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009)

    CAS  Google Scholar 

  11. G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B 179, 61–68 (2013)

    CAS  Google Scholar 

  12. S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovska, J. Chen, Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)

    CAS  Google Scholar 

  13. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)

    CAS  Google Scholar 

  14. A.S.M.I. Uddin, G.-S. Chung, Synthesis of highly dispersed ZnO nanoparticles on graphene surface and their acetylene sensing properties. Sens. Actuators B 205, 338–344 (2014)

    CAS  Google Scholar 

  15. F. Gu, R. Nie, D. Han, Z. Wang, In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B 219, 94–99 (2015)

    CAS  Google Scholar 

  16. M. MalekAlaie, M. Jahangiri, A.M. Rashidi, A. HaghighiAsl, N. Izadi, Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide. Mater. Sci. Semicond. Process. 38, 93–100 (2015)

    CAS  Google Scholar 

  17. J. Shen, Y. Zhu, C. Yang, X. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48, 3686–3699 (2012)

    CAS  Google Scholar 

  18. Y. Yan, Q. Liu, X. Du, J. Qian, H. Mao, K. Wang, Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal. Chim. Acta 853, 258–264 (2015)

    CAS  Google Scholar 

  19. S. Yu, Y.-Q. Zhong, B.-Q. Yu, S.-Y. Cai, L.-Z. Wu, Y. Zhou, Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. Phys. Chem. Chem. Phys. 18, 20338–20344 (2016)

    CAS  Google Scholar 

  20. T. Hu, X. Chu, F. Gao, Y. Dong, W. Sun, L. Bai, Trimethylamine sensing properties of graphene quantum Dots/α-Fe2O3 composites. J. Solid State Chem. 237, 284–291 (2016)

    CAS  Google Scholar 

  21. Y. Tao, X. Cao, Y. Peng, Y. Liu, R. Zhang, Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3. Microchim Acta 176, 485–491 (2012)

    CAS  Google Scholar 

  22. S. Panigrahi, S. Sankaran, S. Mallik, B. Gaddam, A.A. Hanson, Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Mater. Sci. Eng. C 32, 1307–1313 (2012)

    CAS  Google Scholar 

  23. C. Wang, S. Ma, A. Sun, R. Qin, F. Yang, X. Li, F. Li, X. Yang, Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens. Actuators B 193, 326–333 (2014)

    CAS  Google Scholar 

  24. L. Cheng, S.Y. Ma, T.T. Wang, J. Luo, X.B. Li, W.Q. Li, Y.Z. Mao, D.J. Gz, Highly sensitive acetic acid gas sensor based on coral-like and Y-doped SnO2 nanoparticles prepared by electrospinning. Mater. Lett. 137, 265–268 (2014)

    CAS  Google Scholar 

  25. J. Luo, S.Y. Ma, L. Cheng, H.S. Song, W.Q. Li, Facile fabrication and enhanced acetic acid sensing properties of honeycomb-like porous ZnO. Mater. Lett. 138, 100–103 (2015)

    Google Scholar 

  26. J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B 229, 239–248 (2016)

    CAS  Google Scholar 

  27. X. Chu, T. Chen, W. Zhang, B. Zheng, H. Shui, Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens. Actuators B 142, 49–54 (2009)

    CAS  Google Scholar 

  28. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)

    CAS  Google Scholar 

  29. M. Arvand, S. Abbasnejad, N. Ghodsi, Graphene quantum dots decorated with Fe3O4 nanoparticles/functionalized multiwalled carbon nanotubes as a new sensing platform for electrochemical determination of L-DOPA in agricultural products. Anal. Methods 8, 5861–5868 (2016)

    CAS  Google Scholar 

  30. Y. Li, H. Huang, Y. Ma, J. Tong, Highly sensitive fluorescent detection of dihydroxybenzene based on graphene quantum dots. Sens. Actuators B 205, 227–233 (2014)

    CAS  Google Scholar 

  31. L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, S. Chen, Nanosized carbon particles from natural gas soot. Chem. Mater. 21, 2803–2809 (2009)

    CAS  Google Scholar 

  32. K. Habiba, V.I. Makarov, J. Avalos, M.J.F. Guinel, B.R. Weiner, G. Morell, Luminescent graphene quantum dots fabricated by pulsed lased synthesis. Carbon 64, 341–350 (2013)

    CAS  Google Scholar 

  33. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.-J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)

    CAS  Google Scholar 

  34. J. Ju, R. Zhang, S. He, W. Chen, Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv. 4, 52583–52589 (2014)

    CAS  Google Scholar 

  35. J.J.L. Hmar, T. Majumder, S. Dhar, S.P. Mondal, Sulfur and nitrogen co-doped graphene quantum dot decorated ZnO nanorod-polymer hybrid flexible device for photosensing applications. Thin Solid Films 612, 274–283 (2016)

    CAS  Google Scholar 

  36. Q. Luo, X. Yang, X. Zhao, D. Wang, R. Yin, X. Li, Facile preparation of well-dispersed ZnO-cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl. Catal. B 204, 304–315 (2017)

    CAS  Google Scholar 

  37. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    CAS  Google Scholar 

  38. J. Qin, X. Zhang, C. Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 392, 196–203 (2016)

    Google Scholar 

  39. J.-C. Sin, S.-M. Lam, K.-T. Lee, A.R. Mohamed, Self-assembly fabrication of ZnO hierarchical micro/nanospheres for enhanced photocatalytic degradation of endocrine-disrupting chemicals. Mater. Sci. Semicond. Process. 16, 1542–1550 (2013)

    CAS  Google Scholar 

  40. Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L. Wang, H. Fu, A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. J. Mater. Sci. 22, 11778–11784 (2012)

    CAS  Google Scholar 

  41. S. Muthulingam, I.H. Lee, P. Uthirakumar, Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. J. Colloid Interface Sci. 455, 101–109 (2015)

    CAS  Google Scholar 

  42. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010)

    CAS  Google Scholar 

  43. A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloys Compd. 648, 46–52 (2015)

    CAS  Google Scholar 

  44. P. Dhatshanamurthi, M. Shanthi, M. Swaminathan, An efficient pilot scale solar treatment method for dye industry effluent using nano-ZnO. J. Water Process Eng. 16, 28–34 (2017)

    Google Scholar 

  45. X. Bai, C. Sun, D. Liu, X. Luo, D. Li, J. Wang, Photocatalytic degradation of deoxynivalenol using graphene-ZnO hybrids in aqueous suspension. Appl. Catal. B 204, 11–20 (2017)

    CAS  Google Scholar 

  46. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol a from aqueous solution by graphene adsorption. Langmuir 28, 8418 (2012)

    CAS  Google Scholar 

  47. M. Saranya, R. Ramachandran, F. Wang, Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J. Sci. 1, 454–460 (2016)

    Google Scholar 

  48. X. Wang, R. Lv, K. Wang, Synthesis of ZnO@ZnS-Bi2S3 core-shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance. J. Mater. Chem. A 2, 8304–8313 (2014)

    CAS  Google Scholar 

  49. W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J. Mater. Chem. A 3, 19936–19947 (2015)

    CAS  Google Scholar 

  50. L. Sun, X. Zhou, Y. Zhang, T, GuoEnhanced field emission of graphene-ZnO quantum dots hybrid structure. J. Alloys Compd. 632, 604–608 (2015)

    CAS  Google Scholar 

  51. B. Han, X. Liu, X. Xing, N. Chen, X. Xiao, S. Liu, A high response butanol gas sensor based on ZnO hollow spheres. Sens. Actuators B 237, 423–430 (2016)

    CAS  Google Scholar 

  52. Y. Wang, F. Liu, Q. Yang, Y. Gao, P. Sun, T. Zhang, G. Lu, Mesoporous ZnFe2O4 prepared through hard template and its acetone sensing properties. Mater. Lett. 183, 378–381 (2016)

    CAS  Google Scholar 

  53. P. Wang, D. Wang, M. Zhang, Y. Zhu, Y. Xu, X. Ma, X. Wang, ZnO nanosheets/graphene oxide nanocomposites for highly effective acetone vapor detection. Sens. Actuators B 230, 477–484 (2016)

    CAS  Google Scholar 

  54. Z.U. Abideen, A. Katoch, J.-H. Kim, Y.J. Kwon., H.W. Kim, S.S. Kim, Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens. Actuators B 221, 1499–1507 (2015)

    CAS  Google Scholar 

  55. S. Shaoa, W. Wang, K. Zhou, F. Jiang, H. Wu, R. Koehn, GQDs-TiO2 heterojunction based thin films for volatile organic compounds sensor with excellent performance at room temperature. Mater. Lett. 186, 193–197 (2017)

    Google Scholar 

  56. T.T. Wang, S.Y. Ma, L. Cheng, X.L. Xu, J. Luo, X.H. Jiang, W.Q. Li, W.X. Jin, X.X. Sun, Performance of 3D SnO2 microstructure with porous nanosheets for acetic acid sensing. Mater. Lett. 142, 141–144 (2015)

    CAS  Google Scholar 

  57. L. Ma, S.Y. Ma, Z. Qiang, X.L. Xu, Q. Chen, H.M. Yang, H. Chen, Q. Ge, Q.Z. Zeng, B.Q. Wang, Preparation of Co-doped LaFeO3 nanofibers with enhanced acetic acid sensing properties. Mater. Lett. 200, 47–50 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Nos. 61671019, 61271156) and the research project for university personnel returning from overseas sponsored by the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Dai, P., Dong, Y. et al. The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method. J Mater Sci: Mater Electron 28, 19164–19173 (2017). https://doi.org/10.1007/s10854-017-7873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7873-7

Navigation